Predicting signal and background for ttH production at the LHC

Stefan Dittmaier Albert-Ludwigs-Universität Freiburg

Contents

- 1 Introduction
- 2 Production of ttH final states at the LHC
- 3 Predictions for background processes pp \rightarrow ttbb at NLO QCD
- 4 Conclusions
- 5 Outlook to WWbb production

Introduction

Structure and elementary interactions of the SM

Structure and elementary interactions of the SM

Stefan Dittmaier, Predicting signal and background for ttH production at the LHC

Structure and elementary interactions of the SM

The Higgs mechanism – how do particles get their mass?

Peter Higgs

... describing the Abelian Higgs model

The Higgs mechanism – how do particles get their mass?

Peter Higgs

... describing the Abelian Higgs model

The Higgs mechanism - how do particles get their mass ?

Peter Higgs

... describing the Abelian Higgs model

Physikalisches Institut

- Vacuum configuration $\langle 0|\phi(x)|0\rangle \neq 0$ determined by minimum of potential
 - $\hookrightarrow \langle 0|\phi(x)|0
 angle = v$ not invariant, i.e. spontaneous symmetry breaking
- field excitation: H = Higgs boson $\phi(x) = v + H(x) + i\chi(x)$
- coupling of field ψ to ϕ : $g\phi(x)\psi(x)^2 = \underbrace{gv}_{=m} \psi(x)^2 + gH(x)\psi(x)^2 + \dots$ $\psi \xrightarrow{\downarrow v}_{\psi} \psi \xrightarrow{\downarrow \psi}_{\psi} \psi$

 $\hookrightarrow \psi$ gets mass m = vg

Central results from LEP/SLC/Tevatron

- Confirmation of the Standard Model as quantum field theory (quantum corrections significant)
- Particle content completely discovered apart from Higgs boson
- Higgs mass M_H indirectly constrained \hookrightarrow impact on Higgs search

Great success of electroweak precision physics

- $-M_{\rm H} > 114.4 \,{\rm GeV}$ (LEPHIGGS '02) $e^+e^- \not\longrightarrow ZH$ at LEP2
- $-M_{\rm H} < 158 \,{\rm GeV}$ or $M_{\rm H} > 175 \,{\rm GeV}$ $p\bar{p} \rightarrow H \rightarrow WW$ at Tevatron (CDF/D0 '10)
- $-M_{\rm H} < 158 \,{
 m GeV}$ (LEPEWWG '10)

fit to precision data i.e. via quantum corrections

Large Hadron Collider - the world largest particle accelerator

- 30.03.10: LHC turns to $E_{\rm CM} = 7 \,{\rm TeV}$ $\hookrightarrow \mathcal{L} \sim 45 \,{\rm pb}^{-1}$ each at ATLAS/CMS
 - $\,\hookrightarrow\,$ rediscovery of SM physics (W's, Z's, $\mathrm{t}\bar{\mathrm{t}},$ etc.)
- 2011/12: run at $7 \,\mathrm{TeV}$
 - $\hookrightarrow\,$ collect luminosity of some $\,{\rm fb}^{-1}$
- 2013: shutdown and upgrade

- 2014: run at $E_{\rm CM} = 14 \,{\rm TeV}$
 - \hookrightarrow collect some $10^3 \, \mathrm{fb}^{-1}$ until end (?)

Prospects for the Higgs search at $7\,\mathrm{TeV}$

Physikalisches Institut

Required luminosity required for 95% CL exclusion, 3σ evidence, or 5σ discovery:

Prospects for the Higgs search at $7 \,\mathrm{TeV}$ (continued)

Exclusion and discovery prospects for different scenarios:

Higgs search at the LHC

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production via couplings to W/Z bosons or top-quarks

Higgs search at the LHC

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production via couplings to W/Z bosons or top-quarks

Processes at hadron colliders ($\rm p\bar{p}/\rm pp$):

Higgs search at the LHC

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production via couplings to W/Z bosons or top-quarks

Processes at hadron colliders ($\rm p\bar{p}/\rm pp$):

Decay channels for Higgs bosons of moderate mass ($M_{\rm H} \lesssim 300 \, {\rm GeV}$):

Branching ratios of the SM Higgs boson

Higgs event reconstruction with detectors ATLAS and CMS

Higgs event reconstruction with detectors ATLAS and CMS

Simulation of Higgs events

Physikalisches Institut

("'simple"' signatures $H \rightarrow ZZ \rightarrow 2e2\mu/2e2q$)

Higgs event reconstruction with detectors ATLAS and CMS

Simulation of Higgs events

("'simple"' signatures ${ m H} ightarrow { m ZZ} ightarrow { m 2e}2\mu/{ m 2e}2q$)

Precise predictions necessary, otherwise

LHC-Higgs cross section group \rightarrow mandate for theory update

3		CrossSections < LHCP	hysics < TWiki - Mozilla	i Firefox		- • ×		
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe								
🦊 🔿 🗸 🍪 😭 🚺	https://twiki.cem.ch/twiki/bin/view/LHCPhysics/CrossSections				እ☆ ✔ Google	۹ 🐠 ۲		
📷 Meistbesuchte Se 🗸 🐢 Getting Started 🔝 Latest Headlines 🗸								
(22-28 July 2010) 🕄 (🗐 Indico - Management area 😰 🖬 CrossSections < LHCPhysics 🔞								
Organization								
	Overall Contacts							
	ATLAS CMS THEORY Reisaburo Tanaka (LAL) Chiara Mariotti (Torino) Stefan Dittmaier (Freiburg) Giampiero Passarino (Torino)							
Subgroup Contacts and Link for Subgroup Wiki We are organized in 10 subgroups, with 2 experimental contacts (one from ATLAS and one from CMS) and 2 theoretical contacts.								
	Group ATLAS CMS LHCb							
	1. ggF	Jianming Qian (Michigan)	Fabian Stöckli (CERN)		Massimiliano Grazzini (Firenze)	Frank Petriello (Wisconsin)		
	2. VBF	Daniela Rebuzzi (Pavia) Sinead Farrington (Oxford)	Christoph Hackstein (Karlsruhe)		Ansgar Denner (PSI)	Carlo Oleari (Milano- Bicocca)		
	3. WH/ZH	Giacinto Piacquadio (CERN)	Jim Olsen (Princeton)	Clara Matteuzzi (Milano- Bicocca)	Stefan Dittmaier (Freiburg)	Robert Harlander (Wuppertal)		
	4. <u>ttH</u>	Simon Dean (UCL)	Chris Neu (Virginia)		Laura Reina (Florida)	Michael Spira (PSI)		
	5. MSSM neutral	Markus Warsinsky (Freiburg)	Monica Vazquez Acosta (IC)		Michael Spira (PSI)	Georg Weiglein (DESY)		
	6. MSSM charged	Martin Flechl (Freiburg)	Sami Lehti (Helsinki)		Michael Krämer (Aachen)	Tilman Plehn (Heidelberg)		
	7. PDF	Joey Huston (Michigan State)	Kajari Mazumdar (TIFR)		Stefano Forte (Milano)	Robert Thorne (UCL)		
	8. Branching ratios	Daniela Rebuzzi (Pavia)	Ivica Puljak (Split)		Ansgar Denner (PSI)	Sven Heinemeyer (IFCA)		
	9. NLO MC	Jae Yu (Texas)	Marta Felcini (UCD)		Fabio Maltoni (Louvain)	Paolo Nason (Milano- Bicocca)		
	10. Pseudo- observables	Michael Dührssen (CERN)	Martin Grünewald (Ghent)		Sven Heinemeyer (IFCA)	Giampiero Passarino (Torino)		
Fertig								

Physikalisches Institut

Rough numbers:

		Uncertainties		NLO/NNLO/NNLO+		
	$M_{ m H}$	scale	PDF4LHC	QCD	EW	
ggF	$< 500 \mathrm{GeV}$	6-10%	8 - 10%	>100%	5%	LHC Higgs XS WG '10
VBF	$< 500{\rm GeV}$	1%	2 - 7%	5%	5%	
WH	$<200{\rm GeV}$	1%	3 - 4%	30%	5 - 10%	
ZH	$<200{\rm GeV}$	$1{-}2\%$	3 - 4%	40%	5%	
ttH	$<200{\rm GeV}$	10%	9%	5%	?	

		Uncertainties		NLO/ININLO/ININLO+		
	$M_{ m H}$	scale	PDF4LHC	QCD	EW	_
ggF	$< 500{\rm GeV}$	6 - 14%	7%	>100%	5%	LHC Higgs XS WG '10
VBF	$< 500{\rm GeV}$	1%	3 - 4%	5%	5%	
WH	$<200{\rm GeV}$	1%	3 - 4%	30%	5 - 10%	
ZH	$<200{\rm GeV}$	2-4%	3 - 4%	45%	5%	
ttH	$<200{\rm GeV}$	10%	9%	15 - 20%	?	

Production of ttH final states at the LHC

$\mathrm{t\bar{t}H}(\rightarrow\mathrm{b\bar{b}})$ production – a problematic channel

"CSC book", CERN-OPEN-2008-020

- Relevance: direct experimental access to $\mathrm{t\bar{t}H}$ Yukawa coupling
- Problem: control background by pp → ttbb, tt + jets status 2008: signal not significant due to background contamination → activities: ◇ more sophisticated tricks in analysis
 - NLO QCD prediction also for background

Idea under discussion: highly boosted "fat jets"

 \hookrightarrow fat jet containing $b\bar{b}$ pair from high- $p_{\rm T}$ Higgs Plehn, Salam, Spannowsky '09

• fat jets: $p_{\rm T} > 200 \,{\rm GeV}$ and R = 1.5

A theoretical study:

- substructures: $b\bar{b}$ pair with $|m_{b\bar{b}} M_{H}| < 10 \,\text{GeV}$, similar for $t \to 3j$, etc.
- S/\sqrt{B} still $\sim 2.2-2.6$ for $\mathcal{L} = 30 \, \mathrm{fb}^{-1}$
- S/B raised from ~ 0.1 to 0.2-0.4

Physikalisches Institut

• background mainly due to $t\bar{t}b\bar{b}$ (suppression of $t\bar{t} + 2jets$)

Butterworth et al. '08; ATL-PHYS-PUB-2009-088 (successful in WH/ZH revival!)

Predicting pp collisions

Parton content of the proton: valence quarks uud sea quarks u, d, c, s, bgluons g (+photons γ)

"Parton distribution functions" (PDF) $f_{i/p}(x, Q)$

determine fraction x of the p momentum
carried by parton i at "factorization scale" Q
= non-perturbative input (from exp.),
but process independent

Hard interaction of partons
 → perturbative QFT applicable
 Model for hard interactions
 (apart from QCD/QED) enters only here

$$\sigma_{pp\to F+X}(p_1, p_2) = \int_0^1 dx_a \int_0^1 dx_b \sum_{a,b} f_{a/p}(x_a, Q) f_{b/p}(x_b, Q) \,\hat{\sigma}_{ab\to F}(x_a p_1, x_b p_2, Q)$$

Higgs production with $\mathrm{t}\bar{\mathrm{t}}$ or $\mathrm{b}\bar{\mathrm{b}}$ pairs

Typical LO diagrams

 \dots for gg fusion:

g

g

Status of predictions:

- LO Kunszt '84; Dicus, Willenbrock '89; Gunion '91; Marciano, Paige '91
- NLO for ttH production Beenakker, S.D., Krämer, Plümper, Spira, Zerwas '01,'02 Dawson, Orr, Reina, Wackeroth '02 Wu, Ma, Hou, Zhang, Han, Jiang '05

for $b\bar{b}H$ production S.D., Krämer, Spira '03; Dawson, Jackson, Reina, Wackeroth '05

Η

 \overline{Q}

Main complications in the predictions:

• Virtual NLO corrections:

pentagon diagrams

- \hookrightarrow complicated singularity structure, potential numerical instabilities
 - ⇒ techniques to avoid inverse Gram determinants in tensor integrals Denner, S.D. '02; etc.
- Real NLO corrections:
 - \hookrightarrow involved matrix elements, multidimensional phase space, complicated singularities \Rightarrow dipole subtraction formalism
 - Catani, Seymour '96; Phaf, Weinzierl '01 Catani, S.D., Seymour, Trócsányi '02
- Peculiarity in $b\bar{b}H$ production for untagged b's:

- small b transverse momenta lead to large corrections
- $\propto~lpha_{
 m s}\ln(m_{
 m b}/M_{
 m H})$
- resummation of higher orders desirable !
- \hookrightarrow e.g. use b-quark distribution $b(x, \mu_{fact})$ with DGLAP evolution that resums $[\alpha_s \ln(m_b/M_H)]^n$ terms Barnett, Haber, Soper '88 Dicus, Willenbrock '89; etc.

Scale dependence of cross sections at the LHC

Drastic reduction of scale uncertainty in LO ($\sim 100\%$) \rightarrow NLO ($\sim 10-20\%$)

both both b's of $b\bar{b}H$ tagged at $p_T > 20 \,\text{GeV}$, Note: otherwise scale dependence larger!

Total cross sections for ttH production at the LHC

Some statements on uncertainties ($M_{\rm H} = 110 - 200 \, {\rm GeV}$):

Transverse-momentum distributions for ttH production at the LHC

Beenakker et al. '02

Note:

Dynamical scale significantly stabilizes NLO corrections, espacially for $\mathrm{t}\bar{\mathrm{t}}$!

Predictions for background processes ${ m pp} o t ar{t} { m b} ar{{ m b}} + X \,\, { m at} \, { m NLO} \, { m QCD}$

At the LHC the background to some signals probably cannot be measured !

"Les Houches wishlist '05" of missing NLO predictions for 'multi-leg" background: background for

 $t\bar{t}H$, new physics $pp \rightarrow VV + jet$ WW+jet: S.D., Kallweit, Uwer '07,'09; Campbell, R.K.Ellis, Zanderighi '07; ZZ+jet: Binoth et al. '09 $W\gamma$ +jet: Campanario, Englert, Spannowsky, Zeppenfeld '09; WZ+jet: Campanario et al. + Kallweit '10 $pp \rightarrow t\bar{t}bb$ ttH Bredenstein, Denner, S.D., Pozzorini '08,'09; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09 $pp \rightarrow t\bar{t} + 2jets$ ttH Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '10 $pp \rightarrow VVb\bar{b}$ $VBF \rightarrow H \rightarrow VV, t\bar{t}H, new physics$ Denner, S.D., Kallweit, Pozzorini '10; Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek '10 $pp \rightarrow VV + 2jets$ $VBF \rightarrow H \rightarrow VV$ VBF: Jäger et al. '06,'09; Bozzi et al. '07; W^+W^{\pm} jj(QCD): Melia, Melnikov, Rontsch, Zanderighi '10, '11 $pp \rightarrow V + 3 jets$ tt, new physics $pp \rightarrow W + 4iets$ W+3jets: R.K.Ellis, Melnikov, Zanderighi '09; Berger et al. '09 leading colour: Berger et al. '10 Z+3jets: Berger et al. '10 $pp \rightarrow VVV$ SUSY tri-lepton Lazopoulos et al. '07; Binoth, Ossola, Papadopoulos, Pittau '08; Hankele, Zeppenfeld '08 $pp \rightarrow bbbb$ Higgs and new physics (added 2007) (Binoth,) Greiner, Guffanti, (Guillet,) Reiter, Reuter '09-'11

The process $pp \to t\bar{t}b\bar{b}$ in NLO QCD

Bredenstein, Denner, S.D., Pozzorini '08,'09; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09

 $2 \rightarrow 4 \text{ processes}$ define present "NLO multi-leg frontier".

$$= \frac{g_{\rm s}^6}{2^4} f^{afc} f^{bfd} \mu^{2(4-D)} \int \frac{{\rm d}^D q}{(2\pi)^D} \varepsilon^{\alpha,a}(p_1) \varepsilon^{\beta,b}(p_2)$$

$$\times \overline{u}_{{\rm b},k}(k_3) \left(\lambda^e \lambda^c\right)_{kl} \gamma^\mu \frac{m_{\rm b} - \not q}{q^2 - m_{\rm b}^2} \gamma^\nu v_{{\rm \bar{b}},l}(k_4)$$

$$\times \overline{u}_{t,i}(k_1) \left(\lambda^d \lambda^e\right)_{ij} \gamma^{\rho} \frac{m_t - k_2 - k_3 - q}{(q + k_2 + k_3)^2 - m_t^2} \gamma_{\mu} v_{\bar{t},j}(k_2)$$

$$\times \frac{\left[(q + 2p_1 - k_4)_{\nu} g_{\alpha\sigma} + (q - p_1 - k_4)_{\sigma} g_{\nu\alpha} - (2q + p_1 - 2k_4)_{\alpha} g_{\nu\sigma}\right]}{(q + k_3)^2 (q + p_1 + p_2 - k_4)^2 (q + p_1 - k_4)^2 (q - k_4)^2}$$

$$\times \left[(2q + 2p_1 + p_2 - 2k_4)_{\beta} g_{\rho\sigma} - (q + p_1 - p_2 - k_4)_{\rho} g_{\beta\sigma} - (q + p_1 + 2p_2 - k_4)_{\sigma} g_{\beta\rho}\right]$$

D-dim. integral over Minkowski momentum space contains

- various "soft" divergences
- various "collinear" divergences
- \hookrightarrow dimensional regularization turns divergences into poles $(D-4)^{-1}$ and $(D-4)^{-2}$

D-dim. integral over Minkowski momentum space contains

- various "soft" divergences
- various "collinear" divergences
- \hookrightarrow dimensional regularization turns divergences into poles $(D-4)^{-1}$ and $(D-4)^{-2}$

Main difficulties in the loop calculation:

• Algebraic complexity

Generation of graphs / amplitudes via computer algebra (MATHEMATICA)

- \hookrightarrow computer-algebraic reduction to standard form
- $\hookrightarrow~\sim$ 1.4 Mio automatically generated lines of code
- Analytic structure

Difficult loop integrals with UV and IR divergences

- \hookrightarrow regularization in $D \neq 4$ space-time dimensions
- \hookrightarrow elimination of UV divergences via renormalization
- Numerical stability

Strong cancellation between contributions to loop integrals → dedicated methods for dangerous phase-space regions

• Efficient numerical evaluation

Goal: fast, numerically stable evaluation in $~\lesssim 1 {
m sec/event}$

 \hookrightarrow appropriate algorithms, optimizations, cache systems, etc.

our result: $\mathcal{M}_{1-\text{loop}}^{q\bar{q}/\text{gg} \to t\bar{t}b\bar{b}}$ in $\mathcal{O}(0.2\text{sec/event})$

Our Feynman-diagrammatic approach for virtual 1-loop corrections

 $\mathcal{M}_{1-\text{loop}} = \sum_{(\text{sub)diagrams }\Gamma} \mathcal{M}_{\Gamma} \quad \text{generated with FeynARTS (Küblbeck et al. '90; Hahn '01)}$ $\mathcal{M}_{\Gamma} = \sum_{n} \underbrace{C^{(\Gamma)}}_{\text{colour factor}} \underbrace{F^{(\Gamma)}_{n}}_{\uparrow} \quad \underbrace{\hat{\mathcal{M}}_{n}}_{\text{spin structures like } [\bar{u}_{t}(k_{t}) \notin_{g_{1}}(k_{g_{1}})v_{\bar{t}}(k_{\bar{t}})](\varepsilon_{g_{2}}(k_{g}) \cdot k_{t}) \dots}$ invariant functions containing 1-loop tensor integrals $T^{\mu\nu\rho\dots}$

$$T^{\mu\nu\rho...} = (p_k^{\mu} p_l^{\nu} p_m^{\rho} \dots) T_{kl...} + (g^{\mu\nu} p_m^{\rho} \dots) T_{00m...} + \dots$$

 $T_{kl...}$ = linear combination of scalar 1-loop integrals A_0, B_0, C_0, D_0

- recursively calculable à la Passarino/Veltman '79 for regular points
- specially designed methods for rescuing cases with small Gram dets. Denner, S.D. '05
- 5-/6-point integrals reduced to 4-point integrals Denner, S.D. '02,'05
- Features: advantage: get all colour/spin channels in one stroke
 - \hookrightarrow speed: $\mathcal{M}_{1-\text{loop}}^{q\bar{q}/\text{gg} \to t\bar{t}b\bar{b}}$ in $\mathcal{O}(0.2\text{sec/event})$ very fast !
 - lengthy algebra \rightarrow automation (MATHEMATICA)
 - two independent calculations, one using features of FORMCALC (Hahn)

Corrections due to real radiation

Salient features:

- fast evaluation of amplitudes → spinor methods / MADGRAPH Stelzer, Long
- multi-channel Monte Carlo integration over phase space
- soft and collinear divergences
 → dipole subtraction formalism

Catani, Seymour '96; S.D. '99 Phaf, Weinzierl '01 Catani, S.D., Seymour, Trócsányi '02

$$\sigma^{\rm NLO} = \underbrace{\int_{m+1} \left[\mathrm{d}\sigma^{\rm real} - \mathrm{d}\sigma^{\rm sub} \right]}_{\text{finite}} + \underbrace{\int_{m} \left[\mathrm{d}\sigma^{\rm virtual} + \mathrm{d}\bar{\sigma}^{\rm sub}_{1} \right]}_{\text{finite}} + \int_{0}^{1} \mathrm{d}x \underbrace{\int_{m} \left[\mathrm{d}\sigma^{\rm fact}(x) + \left(\mathrm{d}\bar{\sigma}^{\rm sub}(x) \right)_{+} \right]}_{\text{finite}}_{\text{finite}}$$

• two alternative IR regularizations: dim. reg. / mass reg. (small $m_{
m q}, m_{
m b}$)

NLO cross section for constant scale choice

Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09

Main results:

- results of the two groups agree at the 0.1% level
- correction very large at central scale $\mu_{\rm R/F} = m_{\rm t}$: K = 1.77
- NLO scale dependence still large: $\sim 33\%$ for $\mu_0/2 < \mu_{\rm R/F} < 2\mu_0$ (~ 70% at LO)
- \hookrightarrow further theoretical and/or phenomenological tricks necessary to stabilize analysis

Bredenstein, Denner, S.D., Pozzorini '09

NLO cross section for dynamical scale choice

Dynamical scale: $\mu_0^2 = m_{
m t} \sqrt{p_{
m T,b} p_{
m T,ar b}}$

- smaller correction at central scale $\mu_{\rm R/F} = \mu_0$: K = 1.24 ($m_{\rm b\bar{b}} > 100 \,{\rm GeV}$)
- NLO scale dependence reduced: $\sim 21\%$ for $\mu_0/2 < \mu_{\rm R/F} < 2\mu_0$ (~ 78% at LO)

Distributions for $pp \rightarrow t\bar{t}b\bar{b} + X$ at NLO

Invariant mass and $p_{\rm T}$ of the ${
m b}{ar {
m b}}$ pair:

Physikalisches Institut

Bredenstein, Denner,

Simulating ${\rm H} \rightarrow {\rm b} \bar{\rm b}$ with high $p_{\rm T}$

 \hookrightarrow impose cuts $p_{\mathrm{T,b}\bar{\mathrm{b}}} > 200 \,\mathrm{GeV}$

Invariant mass of the ${\rm b}\bar{\rm b}$ pair:

Note: corrections induce distortion in signal region !

Bredenstein, Denner,

Conclusions

Conclusions

$pp \to t\bar{t}H (\to b\bar{b})$ at the LHC

- important for Higgs Yukawa coupling determination
- experimentally very challenging:

signal swamped by background in experimental studies

- \hookrightarrow more sophisticated tricks in analysis needed (fat jets at high p_T ?) NLO predictions for background in data-driven analysis
- $pp \to t \bar{t} b \bar{b}$ = most important background process

$pp \to t \bar{t} b \bar{b}$ at NLO QCD

- calculated by our group with Feynman-diagrammatic technique
 - \hookrightarrow fast and numerically stable evaluation
- dynamical scale choice needed to receive good perturbative stability

 → reduced scale uncertainty / relatively flat K factors in distributions
- background in LO-based experimental studies even underestimated
- NLO cross section confirmed in 2nd calculation at 0.1% level

New experimental analysis of $pp \to t \bar{t} H (\to b \bar{b})$ highly desirable

Outlook to WWbb production

From ttbb to WWbb at NLO QCD: Denner, S.D., Kallweit, Pozzorini '10 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '10

Feautures (of our calculation):

- $\sim 800(300)$ 1-loop diagrams in gg (q \bar{q}) (86 pentagons, 21 hexagons in gg)
- our loop machinery still fast and stable
- higher algebraic complexity: hexagon tensors up to rank 5
 - $\hookrightarrow~4{-}5$ Mio Fortran lines for virtual corrections
- top-quark resonances
 - → gauge-invariant treatment via "complex-mass scheme"
 Denner, S.D., Roth, Wieders '05
- leptonic W-boson decays included via improved narrow-width approximation
 - \hookrightarrow W spin correlations respected
- work in progress:
 - o more phenomenological studies
 - tuned comparison with results of Bevilacqua et al.

Results on integrated cross sections

Denner, S.D., Kallweit, Pozzorini '10

Size off-shell effects:

- $\mathcal{O}(1\%)$ for integrated quantities (quantified by comparing with limit $\Gamma_t \rightarrow 0$)
- larger for distributions, especially near kinematical edges of on-shell tops

Some differential cross sections at the Tevatron

Denner, S.D., Kallweit, Pozzorini '10

Backup slides

NLO

LO

 $pp \rightarrow t\bar{t}b\bar{b} + X$

• trade-off:

 σ [fb]

1000

100

0

50

150

200

 $m_{\rm b\bar{b}}>100\,{\rm GeV}$

100

 $p_{\rm jet,veto} \, [{\rm GeV}]$

- $p_{
 m jet,veto}$ too large ightarrow no reduction of σ
- $p_{\text{iet,veto}}$ too small \rightarrow perturbative instability
- compromise: $p_{\rm jet,veto} \sim 100 \,{\rm GeV} \quad \rightarrow \quad K \sim 0.9$, scale uncertainty $\sim 20\%$

A typical example with small Gram determinant:

A typical example with small Gram determinant:

A typical example with small Gram determinant:

