Confronting τ-decay and $e^{+}+e^{-} \rightarrow$ hadrons with QCD

(C.A. Dominguez, J. Borges, J. Penarrocha. S. Ciulli, H. Spiesberger, A. Almasy, M. Tran)

Outline

- τ-decay and hadronic correlators
- Duality in τ-decay
- Chiral sum rules
- Determination of condensates
- Comparison with $e^{+} e^{-}$-annihilation
- Conclusions

1 Hadronic spectral functions

The τ-lepton is the only lepton that is heavy enough to decay into hadrons.

The decay matrix element factorizes into a leptonic and a hadronic part,

$$
M\left(\tau^{-} \rightarrow \nu_{\tau}+h a d r o n s\right)=\frac{G_{F}}{\sqrt{2}}\left|V_{C K M}\right| l_{\mu} h^{\mu}
$$

where

$$
l_{\mu}=\bar{\nu} \gamma_{\mu}\left(1-\gamma_{5}\right) \tau
$$

is the leptonic current and

$$
h^{\mu}=\langle h a d r o n s| V^{\mu}(0)-A^{\mu}(0)|0\rangle
$$

the hadronic one.

Branching ratio for non-strange hadrons

$$
R_{\tau}=\frac{\Gamma\left(\tau^{-} \rightarrow \nu_{\tau}+\text { hadrons }_{s=0}\right)}{\Gamma\left(\tau \rightarrow \nu_{\tau} e \bar{\nu}_{e}\right)}=3.482 \pm 0.014(\text { ALEPH 2005 })
$$

Optical theorem:

The total hadronic branching ratio is related via the optical theorem to the correlator

$$
\begin{aligned}
\Pi_{\mu \nu}\left(q^{2}\right) & =i \int d^{4} x e^{i q x}<0\left|T\left(J_{\mu}(x) J_{\nu}^{\dagger}(0)\right)\right| 0> \\
& =\left(-g_{\mu \nu} q^{2}+q_{\mu} q_{\nu}\right) \Pi_{J}^{(1+0)}\left(q^{2}\right)-q_{\mu} q_{\nu} \Pi_{J}^{(0)}\left(q^{2}\right) \\
J_{\mu}: \quad & V_{\mu}(x)=\bar{u}(x) \gamma_{\mu} d(x) \text { or } A_{\mu}(x)=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(x)
\end{aligned}
$$

If only hadrons up to a maximal cCM energy s_{0} are counted then

$$
\begin{aligned}
R_{\tau}\left(s_{0}\right) & =24 \pi\left|V_{u d}\right|^{2} S_{E W} \int_{0}^{s_{0}} \frac{d s}{s_{0}}\left(1-\frac{s}{s_{0}}\right)^{2} \\
& {\left[\left(1+2 \frac{s}{s_{0}}\right) \operatorname{Im} \Pi_{V+A}^{(0+1)}(s)-2 \frac{s}{s_{0}} \operatorname{Im} \Pi_{V+A}^{(0)}(s)\right] }
\end{aligned}
$$

$S_{E W}=1.0194 \pm 0.0040$ (electroweak correction) $\left|V_{u d}\right|=0.9739 \pm 0.0003$

One defines spectral functions $v(s)$ and $a(s)$ by:

$$
\begin{aligned}
(v(s), a(s)) & =4 \pi \operatorname{lm} \Pi_{V, A}^{(0+1)}(s+i \varepsilon) \\
a_{0}(s) & =4 \pi \operatorname{Im} \Pi_{A}^{(0)}(s+i \varepsilon)
\end{aligned}
$$

The individual spectral functions can be separated according to angular momentum parity and flavour, e.g.

$$
\begin{array}{ll}
v(s) & \text { even number of pions } \\
a(s) & \text { odd number of pions }
\end{array}
$$

Finite energy sum rules

Duality $=$ Cauchy's theorem

$$
\begin{aligned}
\frac{1}{\pi} \int_{0}^{R} f(s) \operatorname{Im} \Pi(s) d s & =-\frac{1}{2 \pi i} \oint_{|s|=R} f(s) \Pi(s) d s \\
& \simeq-\frac{1}{2 \pi i} \oint_{|s|=R} f(s) \Pi_{Q C D}(s) d s,
\end{aligned}
$$

where $f(s)$ is an arbitrary holomorphic function, e.g. a polynomial.

Operator Product Expansion (OPE)

$$
\Pi\left(q^{2}\right)=\sum_{N=0}^{\infty} \frac{1}{\left(-q^{2}\right)^{N}} C_{2 N}\left(q^{2}, \mu^{2}\right)<0\left|\mathcal{O}_{2 N}\left(\mu^{2}\right)\right| 0>,
$$

with \mathcal{O}_{0} being the unit operator corresponding to the pure perturbative term.

The lowest dimension vacuum expectation values together with commonly used values (at scale $\mu^{2}=1 G e V^{2}$) are:

$$
\begin{aligned}
\langle 0| \bar{q} q|0\rangle & =-(225 \pm 25 \mathrm{MeV})^{3} & & (\mathrm{D}=3) \\
\langle 0| \alpha_{s} G_{\mu \nu} G^{\mu \nu}|0\rangle & =0.04 \pm .0 .02 G e V^{4} & & (\mathrm{D}=4) \\
\langle 0| g_{s} \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q|0\rangle & =0.8 \pm 0.2 G e V^{5} & & (\mathrm{D}=5) \\
\langle 0|(\bar{q} q)^{2}|0\rangle & =-0.0020 \mathrm{GeV}^{6} & & (\mathrm{D}=6)
\end{aligned}
$$

The chiral correlator

$$
\Pi_{V-A} \equiv \Pi_{V}^{(0+1)}-\Pi_{A}^{(0+1)} \quad \underset{\bar{C} D}{ } \frac{m_{u} m_{d}}{q^{4}}+\ldots
$$

This correlator allows the direct study of non-perturbative properties of QCD

$$
\begin{aligned}
\Pi_{V-A}\left(q^{2}\right) & =\frac{1}{\left(-q^{2}\right)^{3}} C_{6} O_{6}+\mathcal{O}\left(1 / Q^{8}\right) \\
& =\frac{32 \pi}{9} \frac{\alpha_{s}<\bar{q} q>^{2}}{q^{6}}+\mathcal{O}\left(1 / Q^{8}\right) \\
& =\left\{1+\frac{\alpha_{s}\left(\mu^{2}\right)}{4 \pi}\left[\frac{247}{12}+\ln \left(\frac{\mu^{2}}{-q^{2}}\right)\right]\right\}+\mathcal{O}\left(1 / Q^{8}\right) .
\end{aligned}
$$

Π_{V-A} serves as a non-perturbative order parameter of spontaneous chiral symmetry breaking.

These condensates enter in other calculations (O_{6} enters in the prediction of the CP-violating parameter $\varepsilon^{\prime} / \varepsilon$ of K^{0}-decay).

Chiral Sum Rules

FESR for the chiral correlator

$$
\begin{aligned}
& \frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} d s s^{N}(v(s)-a(s))_{c o n t}^{d a t a}-f_{\pi}^{2}\left(m_{\pi}^{2}\right)^{N} \\
& =-\frac{1}{2 \pi i} \oint_{|s|=s_{0}} d s s^{N} \Pi^{Q C D}(s) \\
& =(-)^{N}<C_{2 N} O_{2 N}>
\end{aligned}
$$

For $N=2,3$ the sum rules project the $d=6,8$ vacuum condensates, respectively. To first order in α_{s}, radiative corrections to the vacuum condensates do not induce mixing of condensates of different dimension in a given FESR.

Weinberg sum rules:

In the chiral limit $<\mathrm{C}_{2} \mathrm{O}_{2}>=<\mathrm{C}_{4} \mathrm{O}_{4}>=0$.

For $N=0,1 \rightarrow$ we get the first two (Finite Energy) Weinberg sum rules:

$$
\begin{array}{cl}
\frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} d s(v(s)-a(s))=f_{\pi}^{2} & \text { first WSR } \\
\frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} d s s(v(s)-a(s))=0 & \text { second WSR }
\end{array}
$$

Das-Mathur-Okubo sum rule:

The finite remainder of the chiral correlator at zero momentum

$$
\bar{\Pi}(0)=\frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} \frac{d s}{s}(v(s)-a(s))
$$

$\bar{\Pi}(0)$ is related to the finite part of the counter term \bar{L}_{10} of the $\mathcal{O}\left(p^{4}\right)$ Lagrangian of chiral perturbation theory

$$
\bar{\Pi}(0)=-4 \bar{L}_{10}
$$

The DGLMY sum rule:

$$
\frac{1}{4 \pi^{2}} \int_{0}^{s_{0} \rightarrow \infty} d s s \ln \frac{s}{\Lambda^{2}}(v(s)-a(s))=-\frac{4 \pi f_{\pi}^{2}}{3 \alpha}\left(m_{\pi^{ \pm}}^{2}-m_{\pi^{0}}^{2}\right)
$$

(Das, Guralnik, Low, Mathur and Young 1967). Experimentally $m_{\pi^{ \pm}}-m_{\pi^{0}}=$ 4.59 MeV .

The V-A spectral function data

The data clearly show that the asymptotic regime has not been reached, not even at the highest momenta attainable in τ-decay.

Weinberg sum rule:

There is no indication of precocious saturation.

Pinched sum rules

FESR involving factors of $\left(1-\frac{s}{s_{0}}\right)$ minimize the contribution near the cut.

Assume: There are no operators of dimension $d=2$ nor $d=4$ (chiral limit)

We begin by considering a linear combination of the first two Weinberg sum rules

$$
\bar{W}_{1}\left(s_{0}\right) \equiv \frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} d s\left(1-\frac{s}{s_{0}}\right)[v(s)-a(s)]=f_{\pi}^{2}
$$

Pinched DMO sum rule

$$
\bar{\Pi}(0)=\frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} \frac{d s}{s}\left(1-\frac{s}{s_{0}}\right)[v(s)-a(s)]+\frac{f_{\pi}^{2}}{s_{0}}
$$

Numerically, we find from the DMO sum rule

$$
-4 \bar{L}_{10}=\bar{\Pi}(0)=0.02579 \pm 0.00023
$$

(remarkable accuracy for a strong interaction parameter prediction)

Chiral perturbation theory yields

$$
\left[\frac{1}{3} f_{\pi}^{2}<r_{\pi}^{2}>-F_{A}\right]=-4 \bar{L}_{10}=0.026 \pm 0.001
$$

where $<r_{\pi}^{2}>=0.439 \pm 0.008 \mathrm{fm}^{2}$, and F_{A} is the axial-vector coupling measured in radiative pion decay, $F_{A}=0.0058 \pm 0.0008$.

Pinched DGLMY sum rule

$$
\int_{0}^{s_{0} \rightarrow \infty} d s\left[s \ln \frac{s}{\Lambda^{2}}-s_{0} \ln \frac{s_{0}}{\Lambda^{2}}\right] \rho(s)+s_{0} \ln \frac{s_{0}}{\Lambda^{2}} f_{\pi}^{2}=-\frac{4 \pi f_{\pi}^{2}}{3 \alpha}\left(m_{\pi^{ \pm}}^{2}-m_{\pi^{0}}^{2}\right)
$$

At $s_{0}=2.8 \mathrm{GeV}^{2}$ the sum rule yields $(4.0 \pm 0.8) \mathrm{MeV}$ while $\left(m_{\pi^{ \pm}}-m_{\pi^{0}}\right)_{\exp }=$ 4.59MeV.

Extraction of the condensates

The philosophy:

1. dimension $d=2$ and $d=4$ operators are absent in the OPE of the chiral current
2. to require that the polynomial projects out only one operator of the OPE at a time
3. require that the polynomial and its first derivative vanish on the integration contour of radius $|s|=s_{0}$.

In this way one obtains for $N \geq 3$ the sum rules

$$
\begin{aligned}
& \mathcal{O}_{2 N}\left(s_{0}\right) \\
& =(-1)^{N-1} \frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} d s \\
& \times\left[(N-2) s_{0}^{N-1}-(N-1) s_{0}^{N-2} s+s^{N-1}\right] \\
& \times[v(s)-a(s)]-(-1)^{N-1}(N-2) s_{0}^{N-1} f_{\pi}^{2}
\end{aligned}
$$

Pinch factor $\left(s-s_{0}\right)^{2}$ in the polynomial.

Strong stability: The r.h.s. of the sum rule should be constant for all s_{0} larger than some some critical value.

Stability region: $2.3 \leq s_{0}\left(G e V^{2}\right) \leq 3$:

$$
\mathcal{O}_{6}\left(2.7 G e V^{2}\right)=-(0.00226 \pm 0.00055) G e V^{6}
$$

This value is consistent with the one found from the vacuum saturation approximation $\mathcal{O}_{6}^{\text {VS }}=-0.0020 \mathrm{GeV}^{6}$ with $\langle\bar{q} q\rangle\left(s_{0}\right)=-0.019 \mathrm{GeV}^{3}$, and $\alpha\left(s_{0}\right) / \pi=0.1$.

The sum rule for O_{8} reads

$$
\begin{aligned}
\mathcal{O}_{8}\left(s_{0}\right) & =-\frac{1}{4 \pi^{2}} \int_{0}^{s_{0}} d s\left[2 s_{0}^{3}-3 s_{0}^{2} s+s^{3}\right][v(s)-a(s)] \\
& +2 s_{0}^{3} f_{\pi}^{2} \\
& \left.\left(2 s_{0}^{3}-3 s_{0}^{2} s+s^{3}\right)=\left(s_{0}-s\right)^{2}\left(s+2 s_{0}\right)\right)
\end{aligned}
$$

Region of duality in the interval: $2.3 \leq s_{0}\left(G e V^{2}\right) \leq 3$, which yields

$$
\mathcal{O}_{8}\left(2.6 G e V^{2}\right)=-(0.0054 \pm 0.0033) G e V^{8}
$$

Both the sign and the numerical value of this condensate are controversial.

Strong stability ?
$\mathcal{O}_{10}\left(2.5 G e V^{2}\right)=(0.036 \pm 0.014) G e V^{10}, \mathcal{O}_{12}\left(2.5 G e V^{2}\right)=-(0.12 \pm 0.05) G e V^{12}$

Lessons learnt:

- Perturbative QCD seems to be applicable in the space-like region already at rather small momentum transfers of $O\left(1-2 G e V^{2}\right)$.
- The same cannot be seen in the time-like region. Duality has in general not been reached even at $q^{2}=m_{\tau}^{2}$.
- If the weight in the spectral integrals is shifted away from the real axis by pinching, duality is satisfied precociously to a remarkable extend.

2 The V+A spectral function

The $V+A$ spectral function, including the pion pole, roughly exhibits the features expected from global quark-hadron duality: Despite the huge oscillations due to the prominent $\pi, \rho(770), A_{1}(1450)$, the spectral function qualitatively averages out to the quark contribution from perturbative QCD and approximately reaches the free quark model result for $s \rightarrow m_{\tau}^{2}$.

- But not quite! $\mathrm{V}, \mathrm{V}+\mathrm{A}, \mathrm{V}-\mathrm{A}$ spectral functions lie for $s \rightarrow m_{\tau}^{2}$ a bit above the asymptotic QCD, A below.
- The situation is much better for (pinched) integrated observables.

The total decay rate

We consider the τ-decay rate as a function of the upper limit of integration

$$
\begin{aligned}
R_{\tau}\left(s_{0}\right) & =24 \pi\left|V_{u d}\right|^{2} S_{e w} \int_{0}^{s_{0}} \frac{d s}{s_{0}}\left(1-\frac{s}{s_{0}}\right)^{2} \\
\times & {\left[\left(1+2 \frac{s}{s_{0}}\right) \operatorname{Im} \Pi_{V+A}^{(1)}(s)+\operatorname{Im} \Pi_{V+A}^{(0)}(s)\right] }
\end{aligned}
$$

$\left(1-\frac{s}{s_{0}}\right)^{2}\left(1+2 \frac{s}{s_{0}}\right)=\frac{1}{s_{0}^{3}}\left(2 s^{3}+s_{0}^{3}-3 s^{2} s_{0}\right)$ the gluon condensate does not contribute.

The results of ALEPH:

$$
R_{\tau}\left(m_{\tau}^{2}\right)=3.482 \pm 0.014
$$

QCD Correlator (V or A, 5 loops)

In the minimal subtraction scheme for one massless flavor:

$$
\begin{aligned}
8 \pi^{2} \Pi_{V}\left(q^{2}\right) & =c-L-L a-a^{2}\left[L k_{2}-\frac{1}{2} L^{2} \beta_{0}\right] \\
& -a^{3}\left[L k_{3}+\frac{1}{3} L^{3} \beta_{0}^{2}+L^{2}\left(-\frac{1}{2} \beta_{1}-\beta_{0} k_{2}\right)\right] \\
& -a^{4}\left[L k_{4}-\frac{1}{4} L^{4} \beta_{0}^{3}+\frac{1}{6} L^{3} \beta_{0}\left(5 \beta_{1}+6 \beta_{0} k_{2}\right)\right. \\
& \left.+L^{2}\left(-\frac{1}{2} \beta_{2}-\frac{3}{2} \beta_{0} k_{3}-\beta_{1} k_{2}\right)\right]
\end{aligned}
$$

where

$$
a \equiv \frac{\alpha(\mu)}{\pi} ; \quad L \equiv \ln \frac{-q^{2}}{\mu^{2}}
$$

c is a constant related to external renormalzation, effects of the u, d quark masses are negligible.
n is the number of flavours, $z=1.2020569(\mathrm{z}$ is $\zeta(3))$

$$
\begin{aligned}
\beta_{0}= & 1 / 4 *(11-2 / 3 n) \\
\beta_{1}= & 1 / 16 *(102-38 / 3 * n) \\
\beta_{2}= & 1 / 64 *(2857 / 2-5033 / 18 * n+325 / 54 * n * n) \\
\beta_{3}= & 1 /\left(4^{4}\right) *(149753 / 6+3564 * z-(1078361 / 162+6508 / 27 * z) * n \\
& \left.+(50065 / 162+6472 / 81 * z) * n^{2}+1093 / 729 * n^{3}\right) \\
& =47.228040 \text { for } n=3
\end{aligned}
$$

$$
k_{0}=k_{1}=1, \quad k_{2}=1.63982, \quad k_{3}=6.37101, \quad k_{4}=49.076 \quad \text { (for } 3 \text { flavors) }
$$

Parton model result:

To lowest order in QCD

$$
R_{\tau}\left(s_{0}\right)=3\left|V_{u d}\right|^{2} S_{E W}
$$

Simple approach (FOPT):

$$
\begin{gathered}
R_{\tau}\left(s_{0}\right)=24 \pi^{2}\left|V_{u d}\right|^{2} S_{E W} \int_{0}^{s_{0}} \frac{d s}{s_{0}} \frac{1}{\pi} \operatorname{Im} \Pi_{V+A}^{(1)}(s) \\
\times\left[\left(1-3\left(\frac{s}{s_{0}}\right)^{2}+2\left(\frac{s}{s_{0}}\right)^{3}\right]\right.
\end{gathered}
$$

by introducing the QCD moments and using Cauchy's Theorem,

$$
\begin{aligned}
M_{N}\left(s_{0}\right) & \equiv 8 \pi^{2} \int_{0}^{s_{0}} \frac{d s}{s_{0}}\left[\frac{s}{s_{0}}\right]^{N} \frac{1}{\pi} \operatorname{Im} \Pi_{Q C D}(s) \\
& =\int_{0}^{s_{0}} \frac{d s}{s_{0}}\left[\frac{s}{s_{0}}\right]^{N}(v(s)+a(s)) \\
& =8 \pi^{2} \frac{1}{2 i} \oint_{|s|=s_{0}} \frac{d s}{s_{0}}\left[\frac{s}{s_{0}}\right]^{N} \Pi_{Q C D}(s)
\end{aligned}
$$

for fixed $\alpha_{s}\left(\mu^{2}\right)$. Then

$$
R_{\tau}\left(s_{0}\right)=6\left|V_{u d}\right|^{2} S_{E W}\left[M_{0}\left(s_{0}\right)-3 M_{2}\left(s_{0}\right)+2 M_{3}\left(s_{0}\right)\right]
$$

The RGE is only applied at the very end for the finite observable $R_{\tau}\left(s_{0}\right)$ by setting $\mu^{2}=s_{0}$.

Alternative approach (CIPT):

Apply the RGE to the correlator first and then do the contour integration (K.S., M. D. Tran, 1984). The RG is applied more easily to finite observables. Here this is the Adler function

$$
D(s) \equiv-s \frac{d}{d s} \Pi(s)
$$

The Adler function is introduced by partial integration

$$
\begin{aligned}
\oint_{|s|=s_{0}} d s g(s) \Pi(s) & =-\oint_{|s|=s_{0}} \frac{d s}{s}\left[G(s)-G\left(s_{0}\right)\right] s \frac{d}{d s} \Pi(s) \\
\quad \text { with } \quad G(s) & =\int_{0}^{s} d s^{\prime} g\left(s^{\prime}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& R_{\tau, V / A}=\frac{3}{2}\left|V_{u d}\right|^{2} S_{E W} \\
& \times(-2 \pi i) \oint_{|s|=s_{0}} \frac{d s}{s}\left[1-\frac{s}{s_{0}}+2\left(\frac{s}{s_{0}}\right)^{3}-\left(\frac{s}{s_{0}}\right)^{4}\right] D(s)
\end{aligned}
$$

The Adler function has been calculated to fourth order in QCD perturbation theory,

$$
D\left(s, \mu^{2}\right)=\frac{1}{4 \pi^{2}} \sum_{n=0}^{4} K_{n}\left(\mu^{2}\right) a_{s}^{n}\left(\mu^{2}\right) \quad\left(a=\frac{\alpha_{s}}{\pi}\right)
$$

The RGE is solved by simply replacing μ^{2} by $-s$. Then, for $\mathrm{n}_{f}=3$

$$
\begin{aligned}
& K_{0}=K_{1}=1, \quad K_{2}=1.640 \\
& K_{3}=6.371, \quad K_{4}=49.076
\end{aligned}
$$

The integral over the circle: substitute on the circle $s=-s_{0} e^{i \varphi}$,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{|s|=s_{0}} \frac{d s}{s}\left[1-\frac{s}{s_{0}}+2\left(\frac{s}{s_{0}}\right)^{3}-\left(\frac{s}{s_{0}}\right)^{4}\right] a_{s}^{n}(-s) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \varphi\left[1+2 e^{i \varphi}-2 e^{i 3 \varphi}-e^{i 4 \varphi}\right] a_{s}^{n}\left(s_{0} e^{i \varphi}\right)
\end{aligned}
$$

The s-dependence of the α_{s} is obtained by solving the RGE

$$
\frac{d a_{s}}{d \ln s}=\beta\left(a_{s}\right)=-a_{s}^{2} \sum_{n=0}^{3} \beta_{n} a_{s}^{n} \quad\left(a=\frac{\alpha_{s}}{\pi}\right)
$$

numerically with $a_{s}\left(-s_{0}\right)$ as initial value.

For $n_{f}=3$ one finally obtains

$$
\begin{aligned}
R_{\tau, V / A} & =\frac{3}{2}\left|V_{u d}\right|^{2} S_{E W}\left[1+1.364 \frac{\alpha_{s}}{\pi}\left(s_{0}\right)+2.54\left(\frac{\alpha_{s}}{\pi}\right)^{2}\right. \\
& \left.+9.71\left(\frac{\alpha_{s}}{\pi}\right)^{3}+64.29\left(\frac{\alpha_{s}}{\pi}\right)^{4} \ldots\right]
\end{aligned}
$$

Experimentally

$$
\alpha_{s}\left(m_{\tau}^{2}\right)=0.344 \pm 0.009
$$

The convergence is not great.

Decay rate:

Condensates V+A case

$$
\begin{aligned}
\Pi(s)_{n p}= & \frac{1}{24 s^{2}}\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle\left(1+\frac{7}{6} \frac{\alpha_{s}}{\pi}\right)+\frac{1}{2 s^{2}}\left(m_{u}+m_{d}\right)\langle\bar{q} q\rangle \\
+ & \frac{32 \pi^{2}}{81 s^{3}} \frac{\alpha_{s}}{\pi}\langle\bar{q} q\rangle_{\mu}^{2}\left[1+\left(\frac{29}{24}+\frac{17}{18} \ln \frac{-s}{\mu^{2}}\right)\right] \frac{\alpha_{s}}{\pi}+\frac{\left\langle O_{8}\right\rangle}{s^{4}} \\
& \left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle<0.008 G e V^{2}
\end{aligned}
$$

The figure (Kernel s and $1-s / s_{0}$) from tau decay which demonstrates three things:

- C 2 O 2 must be small
- pinching works well
- C4O4 could still rise to $\approx 0.04 \mathrm{GeV}^{4} \mathrm{M}$ (from charmonium sum rules) if the tau mass were bigger (or α_{s} smaller)

\rightarrow Conclusions

- Perturbative and non-perturbartive effects separate nicely in hadronic τ decay.
- The asymptotic region has not quite been reached in the time-like domain, even at the highest energies accessible in τ-decay.
- In the space-like domain and in the nearby complex plane asymptotic QCD is reached precociously.
- The non-perturbative effects isolated in the V, A and especially the V - A sector are well understood.
- The perturbation series is not very convergent. This is due to the large value of α_{s}.
- All in all, perturbative QCD and the OPE beautifully describe all aspects of τ-decay
- There is no evidence for duality violations.

$e^{+} e^{-}$annihilation

$$
\begin{aligned}
J_{\mathrm{em}}^{\mu} & =\sum_{f} Q_{f} J_{f}^{\mu}=\frac{2}{3} \bar{u} \gamma^{\mu} u-\frac{1}{3} \bar{d} \gamma^{\mu} d-\frac{1}{3} \bar{s} \gamma^{\mu} s \\
& =\underbrace{\frac{1}{2}\left(\bar{u} \gamma^{\mu} u-\bar{d} \gamma^{\mu} d\right)}_{I=1}+\underbrace{\frac{1}{6}\left(\bar{u} \gamma^{\mu} u+\bar{d} \gamma^{\mu} d-2 \bar{s} \gamma^{\mu} s\right)}_{I=0}
\end{aligned}
$$

Correlators can be defined for every quark flavor by

$$
\begin{aligned}
\Pi_{f}^{\mu \nu} & =i \int d^{4} x\langle 0| T J_{f}^{\mu}(x) J_{f}^{\nu}(0)|0\rangle=i \int d^{4} x\langle 0| \bar{q}_{f} \gamma_{\mu} q_{f} \bar{q}_{f} \gamma_{\mu} q_{f}| \rangle \\
& =\left(-q^{2} g_{\mu \nu}+q_{\mu} q_{\nu}\right) \Pi_{f}\left(q^{2}\right)
\end{aligned}
$$

for the electromagnetic current

$$
\begin{aligned}
& \Pi_{\mathrm{em}}^{\mu \nu}=i \int d^{4} x\langle 0| T J_{\mathrm{em}}^{\mu}(x) J_{\mathrm{em}}^{\nu}(0)|0\rangle=\sum_{f} Q_{f}^{2} \Pi_{f}^{\mu \nu} . \\
& R(s)=\frac{\sigma_{t o t}\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+} \mu^{-}\right)} \\
& =N_{c} \sum_{i} Q_{i}^{2}\left[8 \pi^{2} \frac{1}{\pi} \operatorname{Im} \Pi^{i}(s)\right]
\end{aligned}
$$

Pinching does not work because $C 2 O 2 \neq 0$.

Figure 1: Results for $C_{2}\left\langle\mathcal{O}_{2}\right\rangle$, in units of GeV^{2}, as a function of s_{0}. Curve (a) corresponds to $\alpha_{s}\left(M_{\tau}^{2}\right)=$ $0.335(\Lambda=365 \mathrm{MeV})$, and curve (b) to $\alpha_{s}\left(M_{\tau}^{2}\right)=0.353(\Lambda=397 \mathrm{MeV})$. A single representative experimental error is shown for each curve.

Figure 2: Results for $C_{4}\left\langle\mathcal{O}_{4}\right\rangle$, in units of GeV^{4}, as a function of s_{0}. Curve (a) corresponds to $\alpha_{s}\left(M_{\tau}^{2}\right)=$ $0.353(\Lambda=397 \mathrm{MeV})$, and curve (b) to $\alpha_{s}\left(M_{\tau}^{2}\right)=0.335(\Lambda=365 \mathrm{MeV})$. A single representative experimental error is shown for each curve.

There is a problem in the $e^{+} e^{-}$data, but in which energy range?

The low energy 2π region is very precisely measured and agrees with the τ data.

The region above $2 \mathrm{GeV}^{2}$ is probably o.k. because otherwise the platau would not be observed

We 'suspect' that the 4π final states are responsible, since these dominate in the energy range betwen 1 and 2 GeV . But we can not exclude that something else is wrong in this energy range

[^0]
[^0]:
 $\mathrm{s}\left(\mathrm{GeV}^{2}\right)$

 $$
 \begin{gathered}
 e^{+} e^{-} \rightarrow 2 \pi^{0} \pi^{+} \pi^{-} \text {(shaded) compared with the analogue } \\
 \text { from } \tau \text {-deday. }
 \end{gathered}
 $$

