Dark matter awareness week: Dark matter and particle physics

Walter Grimus, Patrick Ludl

Faculty of Physics, University of Vienna

December 7th, 2010

W. Grimus, P. Ludl (Univ. of Vienna)

- Introduction: A consistent picture takes shape
- Evidence for dark matter
 - Evidence for DM on galactic scales
 - Evidence for DM on cluster scales
 - Evidence for DM from CMB
- WIMPs: Candidates for particle DM
- Direct and indirect WIMP search
- Conclusions

Introduction: A consistent picture takes shape

W. Grimus, P. Ludl (Univ. of Vienna)

Dark matter awareness week

December 7th, 2010 3 / 42

Evidence for DM from following observations:

- Rotational speed of galaxies
- Orbital velocities of galaxies within clusters
- Gravitational lensing
- Cosmic microwave background
- Scale structure
- Light-element abundances
 - 1932 Jan Hendrik Oort: thickness of galactic disc smaller than one would expect from gravity of observed mass
 - 1933 Fritz Zwicky: DM in galaxy clusters

Remarks:

- DM has gravitational interaction
- Local DM densities from observations 1,2,3
- Mean cosmic DM density from observations 4,5
- Total baryon density from observation 6

Modern consistent picture of cosmology: ACDM model

- $\Lambda = cosmological constant, CDM = cold dark matter$
- Energy fractions of different types of matter:
 - 4% baryonic matter
 - 23% cold dark matter
 - 73% dark energy

Luminous matter \sim 0.002, photons $\sim 5 \times 10^{-5}$, neutrinos < 0.015

Cosmic Concordance:

good concordance among different cosmological data

- $\mathsf{CMB} = \mathsf{cosmic} \ \mathsf{microwave} \ \mathsf{background}$
- LSS = large scale structure
- $\mathsf{BBN} = \mathsf{big} \mathsf{ bang} \mathsf{ nucleosynthesis}$ (light-element abundances:

```
<sup>2</sup>H, <sup>3</sup>He, <sup>4</sup>He, <sup>6</sup>Li, <sup>7</sup>Li)
```

SN la measurements (Hubble constant H_0)

Cold dark matter

Definition 1:

```
Non-relativistic at time t_{\rm rec} of decoupling of matter and radiation t_{\rm rec}\sim 380000\,y \rightarrow formation of atoms CDM consistent with formation Large Scale Structure \rightarrow filaments and voids
```

Definition 2:

```
Non-relativistic since \,\mathcal{T}\sim 1\,{
m MeV}
```

Definition 3:

```
T_{
m dec}^X decoupling temperature of dark matter particles X m_X \ll T_{
m dec}^X \Rightarrow hot DM
m_X \gg T_{
m dec}^X \Rightarrow cold DM
```

Local DM density:

DM accumulation in galaxies, galaxy clusters, stars, ... by gravitation Could galactic DM consist of baryons? DM density in local neighbourhood: $0.3 \,\text{GeV}\,\text{cm}^{-3}$ Limits on MACHO density from microlensing: CDM more than 80% MACHO = massive astrophysical compact halo object Molecular hydrogen clouds?

2

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposed condidates for DM particles:

Particles with zero electric charge, stable or lifetime much longer than the age of the universe

- * WIMPS = weakly interacting massive particles: $M \sim 100 \div 1000 \text{ GeV}$, produced in thermal equilibrium Could be bosons (spin 0, 1) or (Majorana) fermions (spin 1/2, 3/2)
- ***** Axions: $M < 10^{-3} \,\mathrm{eV}$, scalar produced out of thermal equilibirium
- * Sterile neutrinos: Majorana neutrinos with $M \sim 1 \div 50$ keV, non-thermal production, warm or cold dark matter
- ★ WIMPZILLAS: $M > 10^{10}$ GeV, non-thermal production during inflation, could have only gravitational interactions → gravitational wave background

Evidence for dark matter

Rotation curves of galaxies

Rotation in galactic disc: gravitational force = centrifugal force

$$v(r) = \sqrt{\frac{GM(r)}{r}}$$
 with $M(r) \equiv 4\pi \int_0^r \rho(r') r'^2 dr'.$

If galaxy consisted of visible matter only:

$$v(r) \propto rac{1}{\sqrt{r}}$$
 for large $r,$

but one finds

$$v(r)\simeq ext{const}$$
 for large $r \ \Rightarrow \
ho(r)\propto rac{1}{r^2}$ for large r

Rotation curve of NGC 6503

Refs.: Hubble Space Telescope, Bertone G., Hooper D., Silk J. *Particle Dark Matter: Evidence, Candidates and Constraints.* arXiv: hep-ph/0404175 Zwicky 1933: velocities of galaxies in cluster (indirect evidence)

Recently more direct evidence: Displacement of gas relative to to dark matter

Collisions of clusters: stars, CDM, gas (= dominant baryonic matter) Stars, CDM interact only graviationally \Rightarrow non-collisional Hot gas (~ 10⁸ K) interacts electromagnetically \Rightarrow gets displaced by collision

Measurement:

 $\begin{array}{l} \mathsf{CDM} \to \mathsf{gravitational} \ \mathsf{lensing} \\ \mathsf{gas} \to X\text{-rays} \end{array}$

Bullet cluster

Bullet cluster: Gravitating matter in blue, X-ray emitting matter in red

W. Grimus, P. Ludl (Univ. of Vienna)

Cluster MACS J0025.4-1222

Cluster MACS J0025.4-1222: Optical image, mass density countours from gravitational lensing in red, X-ray brightness in yellow

W. Grimus, P. Ludl (Univ. of Vienna)

Evidence for dark matter on cosmological scales:

- CMB and its two-point correlation function of temperature fluctuations
- Large scale structure

CMB: last-scattering surface at $t_{\rm rec} \sim 380000 \, {\rm y} \Rightarrow$

Formation of atoms, universe transparent for primordial photons \Rightarrow imprint of density variations \Leftrightarrow correlations of T_{γ} fluctuations

overdense region \Rightarrow photon red-shifted underdense region \Rightarrow photon blue-shifted Einstein-equations:

$$R_{ik}-\frac{1}{2}g_{ik}R=-8\pi G T_{ik}+\Lambda g_{ik}$$

Cosmological principle (isotropy around every point) ⇒ Friedmann-Lemaître-Robertson-Walker metric

$$ds^2 = g_{ik}dx^i dx^k = dt^2 - a(t)^2 \left(rac{dr^2}{1-kr^2} + r^2 d\Omega^2
ight)$$

scale factor a(t)

- k = 0: Euclidian space,
- k = +1: Riemannian sphere,
- k = -1: hyperbolic space.

Basics of general relativity

Good model for the matter content of the universe: ideal fluid

 $T_{ik} = (\rho + p)u_iu_k + pg_{ik}$

Some definitions

Hubble constant: $H(t) \equiv \frac{\dot{a}(t)}{a(t)}$ Total energy density: $\rho_T \equiv \rho + \frac{\Lambda}{8\pi G}$ Critical energy density: $\rho_c \equiv \frac{3H^2}{8\pi G}$ Energy densities in units of the critical energy density: $\Omega_i \equiv \frac{\rho_i}{\rho_c}$ i = T (total), *b* baryonic, *M* (non-relativistic matter), Λ (dark energy), ...

Friedmann equation

$\mathsf{Ideal}\ \mathsf{fluid} + \mathsf{Robertson}\text{-}\mathsf{Walker}\ \mathsf{metric} \Rightarrow$

Friedmann equation

$$\Omega_T(t) = 1 + rac{k}{\dot{a}(t)^2}.$$

Universe is spatially flat $\Leftrightarrow k = 0 \Leftrightarrow \Omega_T(t) = 1$.

Photon redshift z and expansion:

$$1+z=\frac{\lambda_0}{\lambda}=\frac{a_0}{a}$$

 $\lambda =$ wavelenght at emission, $\lambda_0 =$ present wavelenght

a = scale factor at time of emission, $a_0 =$ present scale factor

Cosmic microwave background (CMB)

 $T_0 = 2.725 \pm 0.001 \,\mathrm{K}$

COBE, WMAP measure $\frac{\delta T(\theta,\phi)}{T_0}$

Ref.: Bertone G., Hooper D., Silk J. Particle Dark Matter: Evidence, Candidates and Constraints. arXiv: hep-ph/0404175

CMB: temperature anisotropies

$$\frac{\delta T(\theta, \phi)}{T_0} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}$$

 $a_{00} = 0$, $a_{1m} \rightarrow$ dipole anisotropy, carries no cosmological information Spherical harmonics correspond to angular variations $\Delta \theta \sim \pi/\ell$

$$C(\theta) \equiv \left\langle \frac{\delta T(\theta_1, \phi_1)}{T_0} \frac{\delta T(\theta_2, \phi_2)}{T_0} \right\rangle_{\theta} \quad \text{with} \quad \theta = \angle \left(\vec{n}(\theta_1, \phi_1), \vec{n}(\theta_2, \phi_2) \right)$$

Independent random variables $a_{\ell m}$:

$$\langle a_{\ell m} a_{\ell' m'} \rangle = C_{\ell} \delta_{\ell \ell'} \delta_{m m'} \quad \Rightarrow \quad C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} \langle |a_{\ell m}|^2 \rangle$$

$$C(\theta) = \sum_{\ell=2}^{\infty} \frac{2\ell+1}{4\pi} C_{\ell} P_{\ell}(\cos\theta) \quad \text{with} \quad C_{\ell} = \int_{-1}^{1} \mathrm{d}\cos\theta P_{\ell}(\cos\theta) C(\theta)$$

CMB: temperature correlations

Oscillations of baryon - photon plasma on background of CDM Acoustic peaks: position of first peak $\Rightarrow \Omega_T$, height $\rightarrow \Omega_b$

WMAP data combined with BAO + SN la

2dF Galaxy Redshift Survey, Sloan Digital Ska Survey \Rightarrow LSS/BAO Present day values of *H*, Ω_i

Observational data (5 years of WMAP (2008))

 $\Omega_b h^2 = 0.0227 \pm 0.0006$ $\Omega_{\rm CDM} h^2 = 0.113 \pm 0.003$ $\Omega_{\Lambda} = 0.726 \pm 0.015$ $h = 0.705 \pm 0.013$

O.Lahav and A.R. Liddle in RPP (2010)

$$h = \frac{H}{100 \text{ km s}^{-1} \text{ MPc}^{-1}}.$$

• CMB

• Large scale structure: CDM \Rightarrow bottom-up formation of structure \Rightarrow voids and filaments in present-day universe

Movies!

From $z \simeq 30$ to present

 $z\simeq 30$ corresponds to age of universe $\sim 10^8\,{
m y}$

WIMPs: Candidates for particle dark matter

WIMPs = weakly interacting massive particles

Most compelling motivations for electroweak-scale particle dark matter:

- Many extensions of the standard model predict new particles at the electroweak scale and above (100 ÷ 1000 GeV)
- In many extensions of the standard model there are new stable particles, e.g.
 - * SUSY with R-Parity (LSP)
 - * Extra dimensions (Kaluza-Klein particles)
 - * Little Higgs theories (lightest T-Parity odd particle)
 - Inert doublet model
- WIMPs are perfectly suitable for CDM in above mass range: "WIMP miracle"

The "WIMP miracle"

- WIMPs χ initially in thermal equilibrium: χx̄ ↔ ff̄
 Universe cools: χx̄ → ff̄, χx̄ ← ff̄
 WIMP f
- **③** WIMPs freeze out: $\chi \bar{\chi} \not\rightarrow f \bar{f}$, $\chi \bar{\chi} \not\leftarrow f \bar{f}$

 $\langle \sigma_A | v | \rangle$: thermally averaged total annihilation cross section (|v| = relativ velocity between two WIMPs in their c.m.s.) Freeze-out temperature $T_F \simeq m_{\chi}/20 \Rightarrow \text{CDM!}$

W. Grimus, P. Ludl (Univ. of Vienna)

Dark matter awareness week

- Amount of dark matter $\propto \langle \sigma_{\mathcal{A}} | \mathbf{v} |
 angle^{-1}$
- Impose a "natural" relation: $\sigma_A = k \alpha^2 / m_\chi^2$
- Remarkable coincidence: $\Omega_{\chi}h^2 \sim 0.1$ for $m_{\chi} \sim 0.1 \div 1$ TeV ($k \sim 0.5 \div 2$) σ_A in pb range \rightarrow nor far from typical weak cross section WIMP miracle!

Direct and indirect dark WIMP search

W. Grimus, P. Ludl (Univ. of Vienna)

Dark matter awareness week

December 7th, 2010 30 / 42

Principles:

- Direct observation: elastic WIMP nucleus scattering
 - Energies of recoiling nuclei: phonons ionization scintillation

• Indirect observation: WIMP anti-WIMP annihilation products

- WIMPs gravitationally bound in massive objects (galactic halo, galactic center, sun, earth,...)
- photons, anti-protons, positrons, neutrinos, ...

Goodman, Witten (1985): Annual modulation of the scattering rate

- WIMPs dragged along with rotation of galactic spiral arms
- $\bullet\,$ Local WIMP density $\sim 0.3\,GeV/cm^3$
- Local velocity of earth with respect to DM:

 $v_E = 220 \text{ km/s} \times (1.05 + 0.07 \cos(2\pi(t - t_m)))$

Local movement of solar system \rightarrow vega + earth orbital velocity Maximal velocity on June 2, minimal at December 2

Annual variation of signal at percent level Seen by DAMA/LIBRA experiment: 250 kg Na I (TI) cistals Not confirmed by other experiments!

Other direct detection experiments

- XENON
- CDMS
- CoGeNT
- ZEPLIN
- Edelweiss
- CRESST
- WARP
- COUPP

Cryogenic DM search (CDMS): Ge + Si detectors Two sites: Stanford underground facility \rightarrow exclusion plot Soudan mine: 2 WIMP candidates (estimated background of 0.9 \pm 0.2 events)

Exclusion plot of CDMS

Gray line: Si only, black line: Ge+Si Pink: DAMA/LIBRA data interpreted by Savage *et al.* Dark gray: simultaneous CoGeNT+DAMA/LIBRA fit by Hooper *et al.* Blue+dark yellow: some SUSY model by Bottino *et al.* γ -ray experiments:

- Main advantage: γ -rays are not deflected by magnetic fields! \Rightarrow valuable angular information
- On galactic scales the spectrum of γ-rays is not attenuated
 ⇒ observed spectrum on earth is the same as was generated in DM annihilation
- Energy spectrum of γ -rays depends on the type and properties of the annihilating WIMPs \Rightarrow important information on the nature of DM

Antimatter experiments:

- WIMP annihilation in the galactic halo: e^+ , \bar{p} , ...
- Particles charged \Rightarrow influence of the galactic magnetic field \Rightarrow no angular information
- Cosmic positrons attractive probes: lose majority of energy over typical length scales of kiloparsecs or less
 ⇒ positrons sample local DM distribution.

W. Grimus, P. Ludl (Univ. of Vienna)

Satellite-based experiments:

- GLAST
- EGRET
- FermiLAT

Principle of ground based γ -ray experiments:

- γ -rays \rightarrow electromagnetic cascades
- $\rightarrow\,$ Secondary shower particles produce
- \rightarrow Cerenkov light

Ground based γ -telescopes:

- HESS
- MAGIC
- VERITAS

Examples for antimatter experiments

- HEAT (balloon observatory)
- PAMELA
- AMS-01, AMS-02

э

PAMELA is a satellite experiment.

Main specifications:

- Launched on 15 June, 2006
- collecting data since July 2006
- 350-610 km elliptic orbit around earth
- Mission shall last till at least December 2011

Scientific goals:

- Precision studies of the charged cosmic radiation over a wide energy range (100 MeV ÷ several 100 GeV)
- Primary scientific goal: measurement of the positron and antiproton energy spectrum
- Search for primordial antinuclei

Low-cutoff orbit + long-term duration misson + specific orbit \Rightarrow ability for

- detection low-energy particles
- long-term time variations of the radiation intensity
- study the effect of the Earth's magnetic field on the incoming radiation

Interesting finding for DM:

Anomalous positron abundance between 10 GeV and 100 GeV!

The PAMELA experiment

・ロト ・回ト ・ 回ト

- AMANDA
- ANTARES
- IceCube

æ

2

Cosmic concordance: firm evidence of non-baryonic cold DM
 On galactic and cluster scale: most likely non-baryonic
 Experimental status of WIMPs inconclusive