

Physics Opportunities with Supernova Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München

Sanduleak –69 202

Tarantula Nebula

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Sanduleak –69 202

Supernova 1987A 23 February 1987

SN 1987A Rings (Hubble Space Telescope 4/1994)

Foreground Star

Supernova Remnant (SNR) 1987A

500 Light-days

Ring system consists of material ejected from the progenitor star, illuminated by UV flash from SN 1987A

Foreground Star

/ (•)

SN 1987A Explosion Hits Inner Ring

September 24, 1994

July 10, 1997

Februay 6, 1998

January 8, 1999

April 21, 1999

February 2, 2000

June 16, 2000

November 14, 2000

March 23, 2001

December 7, 2001 January 5, 2003

August 12, 2003

November 28, 2003

Supernova 1987A • 1994-2003 Hubble Space Telescope • WFPC2 • ACS

NASA and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

Georg Raffelt, MPI Physics, Munich

Newborn Neutron Star

Gravitational binding energy $E_b \approx 3 \times 10^{53} \text{ erg} \approx 17\% \text{ M}_{\text{SUN}} \text{ c}^2$ This shows up as 99% Neutrinos 1% Kinetic energy of explosion 0.01% Photons, outshine host galaxy Neutrino luminosity

$$\begin{array}{l} \mathsf{L}_{_{\rm V}}\ \sim\ 3\times10^{53}\ \mathrm{erg}\ /\ 3\ \mathrm{sec}\\ &\sim\ 3\times10^{19}\ \mathsf{L}_{_{\rm SUN}} \end{array}$$

While it lasts, outshines the entire visible universe

2nd Schrödinger Lecture, University Vienna, 10 May 2011

Georg Raffelt, MPI Physics, Munich

Neutrino Signal of Supernova 1987A

Interpreting SN 1987A Neutrinos

Predicting Neutrinos from Core Collapse

The Possible Role of Neutrinos in Stellar Evolution

It can be considered at present as definitely established that the energy production in stars is caused by various types of thermonuclear reactions taking place in their interior. Since these reaction chains usually contain the processes of β -disintegration accompanied by the emission of high speed neutrinos, and since the neutrinos can pass almost without difficulty through the body of the star, we must assume that a certain part of the total energy produced escapes into interstellar space without being noticed as the actual thermal radiation of the star. Thus, for example, in the case of the carbon-nitrogen cycle in the sun, about 7 percent of the energy produced is lost in the form of neutrino radiation. However, since, in such reaction chains, the energy taken away by neutrinos represents a definite fraction of the total energy liberation, these losses are of but secondary importance for the problem of stellar equilibrium and evolution.

More detailed calculations on this collapse process are now in progress.

G. GAMOW

The George Washington University, Washington, D. C.,

M. SCHOENBERG*

University of São Paulo, São Paulo, Brazil, November 23, 1940.

*Fellow of the Guggenheim Memorial Foundation. Now in Washington, D. C.

Phys. Rev. 58:1117 (1940)

Thermonuclear vs. Core-Collapse Supernovae

Thermo-nuclear (Type Ia)	Core collapse (Type II, Ib/c)	
 Carbon-oxygen white dwarf (remnant of low-mass star) Accretes matter from companion 	 Degenerate iron core of evolved massive star Accretes matter by nuclear burning at its surface 	
Chandrasekhar limit is reached — M _{Ch} ≈1.5 M _{sun} (2Y _e) ² COLLAPSE SETS IN		
Nuclear burning of C and O ignites → Nuclear deflagration ("Fusion bomb" triggered by collapse)	Collapse to nuclear density Bounce & shock Implosion \rightarrow Explosion	
Powered by nuclear binding energy	Powered by gravity	
Gain of nuclear binding energy 1 MeV per nucleon	Gain of gravitational binding energy 100 MeV per nucleon 99% into neutrinos	
Comparable "visible" energy release of $\sim 3 \times 10^{51}$ erg		

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

Spectral Classification of Supernovae

Spectral Type	la	Ib	lc	II
	No Hydrogen		Hydrogen	
Spectrum	Silicon	No Silicon		
		Helium	No Helium	
Physical Mechanism	Nuclear explosion of low-mass star	Core collapse of evolved massive star (may have lost its hydrogen or even helium envelope during red-giant evolution)		
Light Curve	Reproducible	Large variations		
Neutrinos	Insignificant	\sim 100 × Visible energy		
Compact Remnant	None	Neutron star (typically appears as pulsar) Sometimes black hole ?		
Rate / h ² SNu	0.36 ± 0.11	0.14 ±	± 0.07	0.71 ± 0.34
Observed	Total ~ 5600 as of 2011 (Asiago SN Catalogue)			

Explosion Mechanism

Collapse and Prompt Explosion

Movies by J.A.Font, Numerical Hydrodynamics in General Relativity http://www.livingreviews.org

Supernova explosion is primarily a hydrodynamical phenomenon

Exploding Models (8–10 Solar Masses) with O-Ne-Mg-Cores

Kitaura, Janka & Hillebrandt: "Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae", astro-ph/0512065

Why No Prompt Explosion?

Dissociated Material (n, p, e, v)

Pclissor

- Shock wave forms within the iron core
- Dissipates its energy by dissociating the remaining layer of iron

Delayed Explosion

Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982) Bethe & Wilson, ApJ 295 (1985) 14

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutrinos to the Rescue

Picture adapted from Janka, astro-ph/0008432

Standing Accretion Shock Instability

Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html

Gravitational Waves from Core-Collapse Supernovae

Müller, Rampp, Buras, Janka, & Shoemaker, astro-ph/0309833 "Towards gravitational wave signals from realistic core collapse supernova models"

Neutrinos from Next Nearby SN

Operational Detectors for Supernova Neutrinos

Super-Kamiokande Neutrino Detector

Simulated Supernova Burst in Super-Kamiokande

Movie by C. Little, including work by S. Farrell & B. Reed, (Kate Scholberg's group at Duke University) http://snews.bnl.gov/snmovie.html

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova Pointing with Neutrinos

- Beacom & Vogel: Can a supernova be located by its neutrinos? [astro-ph/9811350]
- Tomàs, Semikoz, Raffelt, Kachelriess & Dighe: Supernova pointing with low- and high-energy neutrino detectors [hep-ph/0307050]

IceCube Neutrino Telescope at the South Pole

Instrumentation of 1 km³ antarctic ice with \sim 5000 photo multipliers completed December 2010

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

IceCube as a Supernova Neutrino Detector

Each optical module (OM) picks up Cherenkov light

- \sim 300 Cherenkov photons per OM from SN at 10 kpc
- Bkgd rate in one OM < 300 Hz
- SN appears as "correlated noise" in \sim 5000 OMs

1.5

SN signal at 10 kpc

[arXiv:0908.1871]

of Basel group

10.8 M_{sun} simulation

Variability seen in Neutrinos

Could be smaller in realistic 3D models

Lund, Marek, Lunardini, Janka & Raffelt, arXiv:1006.1889 Using 2-D model of Marek, Janka & Müller, arXiv:0808.4136

Millisecond Bounce Time Reconstruction

Super-Kamiokande

- Emission model adapted to measured SN 1987A data
- "Pessimistic distance" 20 kpc
- Determine bounce time to a few tens of milliseconds

Pagliaroli, Vissani, Coccia & Fulgione arXiv:0903.1191

FIG. 1: Typical Monte Carlo realization (red histogram) and reconstructed fit (blue line) for the benchmark case discussed in the text for a SN at 10 kpc.

Halzen & Raffelt, arXiv:0908.2317

Next Generation Large-Scale Detector Concepts

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova Rate

© 2005 Astronomy

Core-Collapse SN Rate in the Milky Way

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

High and Low Supernova Rates in Nearby Galaxies

Last Observed Supernova: 1885A

Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

The Red Supergiant Betelgeuse (Alpha Orionis)

First resolved image of a star other than Sun

Distance (Hipparcos) 130 pc (425 lyr)

If Betelgeuse goes Supernova:

- 6×10⁷ neutrino events in Super-Kamiokande
- 2.4×10³ neutrons /day from Si burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

SuperNova Early Warning System (SNEWS)

- Neutrinos arrive several hours before photons
- Can alert astronomers several hours in advance

http://snews.bnl.gov

Diffuse SN Neutrino Background

Diffuse Supernova Neutrino Background (DSNB)

- Approx. 10 core collapses/sec in the visible universe
- Emitted v energy density

 extra galactic background light
 10% of CMB density
- Detectable $\overline{\nu}_e$ flux at Earth $\sim 10 \text{ cm}^{-2} \text{ s}^{-1}$ mostly from redshift $z \sim 1$
- Confirm star-formation rate
- Nu emission from average core collapse & black-hole formation
- Pushing frontiers of neutrino astronomy to cosmic distances!

Window of opportunity between reactor $\overline{\nu}_e$ and atmospheric ν bkg

Redshift Dependence of Cosmic Supernova Rate

Georg Raffelt, MPI Physics, Munich

2nd Schrödinger Lecture, University Vienna, 10 May 2011

Realistic DSNB Estimate

FIG. 4: DSNB flux spectrum for emitted neutrino spectra as labeled. For each spectrum, two curves are plotted representing the full range of uncertainties due to astrophysical inputs (the fiducial prediction lies in between). The shadings indicate backgrounds, with origins as labeled. Decays of invisible muons and spallation products would be reduced in a gadolinium-enhanced SK, opening the energy region 10 MeV and above to a rate-limited DSNB search; see Fig. 5.

FIG. 5: DSNB event rates at SK (flux spectra weighted with the detection cross section) against positron energy. Note the linear axis. We hatch in the 2003 upper limit by the Super-Kamiokande Collaboration, < 2 events $(22.5 \text{ kton yr})^{-1}$ in the energy range 18–26 MeV. The limit applies to all spectra (see text). In a gadolinium-enhanced SK, decays of invisible muon and spallation products would be reduced, opening up the energy range $\gtrsim 10$ MeV for DSNB search (unshaded region).

Horiuchi, Beacom & Dwek, arXiv:0812.3157v3

Neutron Tagging in Super-K with Gadolinium

- Background suppression: Neutron tagging in $\overline{\nu}_e + p \rightarrow n + e^+$
- Scintillator detectors: Low threshold for γ(2.2 MeV)
- Water Cherenkov: Dissolve Gd as neutron trap (8 MeV γ cascade)
- Need 100 tons Gd for Super-K (50 kt water)

Particle-Physics Constraints

Do Neutrinos Gravitate?

Shapiro time delay for particles moving in a gravitational potential

$$\Delta t = -2 \int_{A}^{B} dt \, \Phi[r(t)]$$

For trip from LMC to us, depending on galactic model,

 $\Delta t \approx 1-5$ months

Neutrinos and photons respond to gravity the same to within

 $1 - 4 \times 10^{-3}$

Longo, PRL 60:173, 1988 Krauss & Tremaine, PRL 60:176, 1988

Neutrino Limits by Intrinsic Signal Dispersion

Time of flight delay by neutrino mass

G. Zatsepin, JETP Lett. 8:205, 1968

$$\Delta t = 2.57 \mathrm{s} \ \frac{D}{50 \ \mathrm{kpc}} \left(\frac{10 \ \mathrm{MeV}}{E_{\nu}}\right)^2 \left(\frac{m_{\nu}}{10 \ \mathrm{eV}}\right)^2$$

SN 1987A signal duration implies

 $m_{\nu_e} \lesssim 20 \text{ eV}$

Loredo & Lamb

Ann N.Y. Acad. Sci. 571 (1989) 601 find 23 eV (95% CL limit) from detailed maximum-likelihood analysis

- At the time of SN 1987A competitive with tritium end-point
- Today $m_{
 m v} < 2.2 \ {\rm eV}$ from tritium
- Cosmological limit today $m_{
 m v} \lesssim 0.2~{
 m eV}$

"Milli charged" neutrinos

Path bent by galactic magnetic field, inducing a time delay

$$\frac{\Delta t}{t} = \frac{e_{\nu}^2 (B_{\perp} d_B)^2}{6E_{\nu}^2} < 3 \times 10^{-12}$$

SN 1987A signal duration implies

$$\frac{e_{\nu}}{e} < 3 \times 10^{-17} \frac{1\mu G}{B_{\perp}} \frac{1 \text{ kpc}}{d_B}$$

• Barbiellini & Cocconi, Nature 329 (1987) 21

• Bahcall, Neutrino Astrophysics (1989)

Assuming charge conservation in neutron decay yields a more restrictive limit of about 3×10^{-21} e

Supernova 1987A Energy-Loss Argument

Emission of very weakly interacting particles would "steal" energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.)

Late-time signal most sensitive observable

Axion Bounds

Neutrino Diffusion in a Supernova Core

Main neutrino reactions	Electron flavor $\nu_e + n \rightarrow p + e^ \overline{\nu}_e + p \rightarrow n + e^+$ All flavors $\nu + N \rightarrow N + \nu$
Neutral-current scattering cross section	$\sigma_{\nu N} = \frac{C_V^2 + 3C_A^2}{\pi} \ G_F^2 E_\nu^2 \approx 2 \times 10^{-40} \text{cm}^2 \left(\frac{E_\nu}{100 \text{ MeV}}\right)^2$
Nucleon density	$n_B = \frac{\rho_{\rm nuc}}{m_N} \approx 1.8 \times 10^{38} {\rm cm}^{-3}$
Scattering rate	$\Gamma = \sigma n_B \approx 1.1 \times 10^9 \text{ s}^{-1} \left(\frac{E_{\nu}}{100 \text{ MeV}}\right)^2$
Mean free path	$\lambda = \frac{1}{\sigma n_B} \approx 28 \text{ cm} \left(\frac{100 \text{ MeV}}{E_v}\right)^2$
Diffusion time	$t_{\rm diff} \approx \frac{R^2}{\lambda} \approx 1.2 { m sec} \left(\frac{R}{10 { m km}}\right)^2 \left(\frac{{ m E}_{\nu}}{100 { m MeV}}\right)^2$

Sterile Neutrino Emission from a SN Core

- Assume sterile neutrino mixed with v_e , small mixing angle Θ
- Due to matter effect, oscillation length < mean free path (mfp), (weak damping limit)

 $\ell_{\rm osc} \ll \lambda_{\rm s} = \Gamma_{\rm s}^{-1}$

• v_e appears as v_s on average with probability

$$\langle p_{\nu_e \to \nu_s} \rangle = \frac{1}{2} \sin^2 2\Theta$$

- Typical v_e interaction rate in SN core (inverse mfp) $\Gamma_e \sim 10^{10} \text{ s}^{-1}$
- Production rate (inverse mfp) relative to that of v_e

$$\Gamma_s = \frac{1}{2}\sin^2(2\Theta) \Gamma_e \sim \frac{1}{2}\sin^2(2\Theta) \times 10^{10} \text{ s}^{-1}$$

- Avoiding fast energy loss of SN 1987A $\Gamma_s < 1 \ {\rm s}^{-1}$
- Constrain mixing angle for masses $\gtrsim 30$ keV (matter effect irrelevant) $\sin^2(2\Theta) \lesssim 2 \times 10^{-10}$

I

Sterile Neutrino Limits

INERT NEUTRINOS IN SUPERNOVAE

K. KAINULAINEN*

NORDITA, Copenhagen Ø, Denmark

J. MAALAMPI**

Department of Theoretical Physics, University of Helsinki, Finland

J.T. PELTONIEMI***

Department of Theoretical Physics, University of Helsinki, Finland

Received 22 November 1990

See also:

Maalampi & Peltoniemi: Effects of the 17-keV neutrino in supernovae PLB 269:357,1991

Raffelt & Zhou arXiv:1102.5124

Hidaka & Fuller: Dark matter sterile neutrinos in stellar collapse: alteration of energy/lepton number transport and a mechanism for supernova explosion enhancement PRD 74:125015,2006

Dirac Neutrino Constraints by SN 1987A

- If neutrinos are Dirac particles, right-handed states exist that are "sterile" (non-interacting)
- Couplings are constrained by SN 1987A energy-loss

Large Extra Dimensions

- Fundamentally, space-time can have more than 4 dimensions (e.g. 10 or 11 in string theories)
- If standard model fields are confined to 4D brane in (4+n) D space-time, and only gravity propagates in the (4+n) D bulk, the compactification scale could be macroscopic

brane

matter

trapped on the brane

> gravitons escape into the bulk

bulk

Supernova 1987A Limit on Large Extra Dimensions

Cullen & Perelstein, hep-ph/9904422, Hanhart et al., nucl-th/0007016

FIG. 1. The leading diagrams contributing to processes $NN \rightarrow NNh$ and $NN \rightarrow NN\phi$. Nucleons are denoted by solid lines and the KK-modes h or ϕ are denoted by dashed lines. Solid squares denote an insertion of the single-nucleon energy-momentum tensor, while solid ovals containing \mathcal{A} denote an insertion of the full NN scattering amplitude. The solid oval containing Γ denotes the non-pole vertex required for the sum of diagrams to satisfy $\partial_{\mu}M^{\mu\nu} = 0$.

SN core emits large flux of KK gravity modes by nucleon-nucleon bremsstrahlung Rate $\propto M_{\rm Pl}^{-2}$ Large multiplicity of modes $RT \sim 10^{11}$ for R ~ 1 mm, T ~ 30 MeV Rate $\propto \frac{(RT)^n}{M_{\rm Pl}^2} \propto \frac{T^n}{M_{\rm Pl}^{2+n}}$

- Originally the most restrictive limit on such theories, except for cosmological arguments.
- Other restrictive limits from neutron stars.

Collective Neutrino Oscillations

3rd Schrödinger Lecture Thursday 19 May 2011