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Goal: an analytic first approximation to QCD

• As Simple as Schrödinger Theory in Atomic Physics

• Relativistic, Frame-Independent, Color-Confining

• QCD Coupling at all scales

• Hadron Spectroscopy

• Light-Front Wavefunctions

• Form Factors, Hadronic Observables, Constituent 
Counting Rules

• Insights into QCD Condensates

• Systematically improvable

• Eliminate scale ambiguities

Guy de Teramond, 
Xing-Gang Wu

Leonardo di Giustino
Matin Mojaza
Joseph Day

sjb
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

Evolve in 
light-front time!

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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III. Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at � = t + z/c = 0

x+ = x0 + x3 light-front time

x� = x0 � x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k� = k0 � k3 light-front energy

k · x = 1
2 (k+x� + k�x+)� k⇥ · x⇥

On shell relation k2 = m2 leads to dispersion relation k� = k2
�+m2

k+

KITPC, Beijing, October 19, 2010 Page 12
Quantum chromodynamics and other field theories on the light cone.
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General remarks about orbital angular mo-
mentum
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Invariant under boosts!  Independent of Pμ 
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Bethe-Salpeter WF integrated over k- 

n = 3

Square:  Structure Functions 
Measured in DIS

k± = k0 ± kz



 

Each element of 
flash photograph  

illuminated  
at same Light-Front  time

� = t + z/c

Eigenstate -- independent of �

Evolve in LF time

P� = i
d

d�

7HQCD
LF |�h >= M2

h|�h >

HLF = P+P� � ~P 2
?

Causal, frame-independent
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Form Factors are 
Overlaps of LFWFs

Interaction 
picture

Drell &Yan, West
Exact LF formula

Drell, sjb
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�
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a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by
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.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3
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16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
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x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
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Nonzero Proton Anomalous Moment -->
Nonzero orbital  quark angular momentum

9

Exact LF Formula for Pauli Form Factor



 
zero for q+ = 0

10

Calculation of Form Factors in  Equal-Time Theory

Instant Form

Calculation of Form Factors in  Light-Front Theory

Front Form

Absent for q+ = 0 zero !!

Need vacuum-induced currents

Complete Answer
No vacuum graphs
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Compare  with calculation of proton form factor 
in Instant Form 

• Need to boost proton wavefunction: p to p+q. Extremely 
complicated dynamical problem; particle number changes

• Need to couple to all currents arising from vacuum!! 
Remain even after normal-ordering

• Instant-form WFs insufficient to calculate form factors

• Each time-ordered contribution is frame-dependent

• Divide by disconnected vacuum diagrams
          

< p + q|Jµ(0)|p >

p + qp p + qp

11



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

12Sivers, T-odd from lensing
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001
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DVCS/GPD

 Bakker & JI
Lorce
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�⇤ �⇤

Leading-Twist Contribution to  DVCS

Interactions occur between the LF times of the two virtual photon!!

A+ = 0 (LC gauge)

p p

p

Cut is Leading-Twist Diffractive DIS 
�⇤p! Xp0

Dynamic: Not in LFWF 
overlap!

Effects GPD sum rules?
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Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

�M (x,Q) =
� Q

d2�k ⇥qq̄(x,�k�)
P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

k2
� < Q2

�

i

xi = 1

Lepage, sjb

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE

• Conformal Expansions

• Compute from valence light-front wavefunction in light-cone 
gauge

x

1� x
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P-
Coulomb Phases

--Wilson Line

“Lensing Effect”
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i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 
Violates pQCD 
Factorization!

Sign reversal in DY!

QED: 
Lensing 

involves soft 
scales



 

QCD and the LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude
ERBL Evolution

Heavy Quark Fock States
Intrinsic Charm

Gluonic properties
DGLAP

Quark & Flavor Struct

Coordinate space 
representation

Quark & Flavor Structure

Baryon Excitations

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Initial and Final State 
Rescattering

DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Nuclear Modifications
Baryon Anomaly

Color Transparency

Hard Exclusive Amplitudes
Form Factors

Counting Rules

�p(x1, x2, Q
2)

AdS/QCD
Light-Front Holography

LF Schrodinger Eqn.

LF Overlap, incl ERBL

J=0 Fixed Pole

Orbital Angular Momentum
Spin, Chiral Properties

Crewther Relation

17

Burkardt, Schmidt, sjb

Weak DecaysHadronization at 
Amplitude Level



 

Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #
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)!0" , (3.29)

!q$, qN $"" 1

!n
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%$
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$!"

b!
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(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$
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)!0" , (3.30)
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >
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P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
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(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD

19

DLCQ
Pauli, Hornbostel, sjb

Minkowski space; frame-independent; no fermion doubling; no ghosts
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Light-Front  vs. Instant Form
• Light-Front  Wavefunctions are frame-independent

• Boosting an instant-form wavefunctions dynamical  
problem -- extremely complicated even in QED

• Need to couple to all currents arising from vacuum 
(Remain even after normal-ordering)

• Vacuum state is lowest energy eigenstate of Hamiltonian

• Light-Front Vacuum same as vacuum of free 
Hamiltonian

• Zero anomalous gravitomagnetic moment

• Instant-Form Vacuum infinitely complex even in QED

• n! time-ordered diagrams in Instant Form

• Causal commutators using LF time; cluster 
decomposition

20
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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16 

LIGHT-FRONT MATRIX EQUATION
G.P. Lepage, sjb

A+ = 0

⇥� ggg � d̄X

⇥� ggg � p̄n̄X

R = �(⇥�d̄X)
�(⇥�p̄n̄X)

R = C

ū(x) ⇥= d̄(x)

s̄(x) ⇥= s(x)

Rigorous Method for Solving Non-Perturbative QCD!

• Light-Front Vacuum = Vacuum of Free Hamiltonian!

Causal, Frame-Independent
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c

c̄

Fixed LF time

Higher Fock States of the Proton

Intrinsic heavy quarks    

s(x), c(x), b(x) at high x !
s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>
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|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Fixed LF time

23

Intrinsic heavy quarks,    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3
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E866/NuSea (Drell-Yan)

s(x) �= s̄(x)

Intrinsic glue, sea, 
heavy quarks

d̄(x) �= ū(x)



 

HQED

[� �2

2mred
+ Ve�(�S,�r)] �(�r) = E �(�r)

[� 1
2mred

d2

dr2
+

1
2mred

⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Includes Lamb Shift, quantum corrections

Coulomb  potential Veff ⇥ VC(r) = ��

r
Semiclassical first approximation to QED 

Bohr Spectrum

QED atoms: positronium and 
muonium

25

Fixed time t (“instant form”)



 
Confining AdS/QCD  

potential Semiclassical first approximation to QCD 

U(⇣) = 4⇣2 + 22(L + S � 1)

HQED

Coupled Light-Front Fock states

Effective two-particle equation

 Azimuthal  Basis

QCD Meson Spectrum

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

�2 = x(1� x)b2
�

26

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Fixed Light-Front Time  
(Front  form)

AdS/QCD:
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Derivation of the Light-Front Radial Schrodinger Equation  directly 
from LF QCD

M2 =
⌅ 1

0
dx

⌅
d2 k⇥
16�3

 k2
⇥

x(1� x)

���⇥(x, k⇥)
���
2

+ interactions

=
⌅ 1

0

dx

x(1� x)

⌅
d2 b⇥ ⇥�(x, b⇥)

⇥
� ⇤2

⇥b��

⇤
⇥(x, b⇥) + interactions.

(⌃�,⇥), ⌃� =
�

x(1� x)⌃b�:Change 
variables �2 =

1
�

d

d�

�
�

d

d�

⇥
+

1
�2

⇤2

⇤⇥2

M2 =
⇤

d� ⇥�(�)
⌅

�

�
� d2

d�2
� 1

�

d

d�
+

L2

�2

⇥
⇥(�)⇤

�

+
⇤

d� ⇥�(�)U(�)⇥(�)

=
⇤

d� ⇥�(�)
�
� d2

d�2
� 1� 4L2

4�2
+ U(�)

⇥
⇥(�)
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

28

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)
AdS/QCD:
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Same slope in n and L Massless pion
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M2

L

n! 3 n! 0n! 1n! 2
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N!1520"
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2
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8

All confirmed 
resonances 
from PDG 

2012

de Teramond, sjb 

See also Forkel, Beyer, Federico, Klempt
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2 or 3

2 .

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].
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the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2 for the negative-

parity spin-12 baryons and ν = µR + 1
2 for the positive parity spin-32 baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-12 positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin-32 negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 12 negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-32 minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2 or 3

2 . It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular

46

positive parity

negative parity

κ = 0.49 GeV κ = 0.51 GeV

Baryon Spectroscopy from AdS/QCD and Light-Front Holography
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• LF wavefunctions play the role of Schrödinger 
wavefunctions in Atomic Physics

• LFWFs=Hadron Eigensolutions: Direct Connection to QCD 
Lagrangian

• Relativistic, frame-independent: no boosts, no disc 
contraction, Melosh built into LF spinors 

• Hadronic observables computed from LFWFs: Form factors, 
Structure Functions, Distribution  Amplitudes, GPDs, TMDs, 
Weak Decays, .... modulo `lensing’ from ISIs, FSIs

• Cannot compute current matrix elements using instant or 
point form from eigensolutions alone -- need to include 
vacuum currents!

•Hadron Physics without LFWFs is like 
Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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•Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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Light-Front Holography and Non-Perturbative QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Goal:   
Use AdS/QCD duality to construct 

a first approximation to QCD
Hadron Spectrum  

Light-Front Wavefunctions,
Running coupling in IR

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

in collaboration with 
Guy de Teramond

33

Central problem  for strongly-coupled gauge theories
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11
35

invariant measure
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2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
�
R2/z2

⇥
�⌅m .

• Action for massive scalar modes on AdSd+1:

S[⇥] =
1
2

⌥
dd+1x

⇧
g 1

2

�
g⌅m⌃⌅⇥⌃m⇥� µ2⇥2

 
,
⇧

g ⇤ (R/z)d+1.

• Equation of motion
1
⇧

g

⌃

⌃x⌅

�⇧
g g⌅m ⌃

⌃xm
⇥
⇥

+ µ2⇥ = 0.

• Factor out dependence along xµ-coordinates , ⇥P (x, z) = e�iP ·x ⇥(z), PµPµ =M2 :
⇤
z2⌃2

z � (d� 1)z ⌃z + z2M2 � (µR)2
⌅
⇥(z) = 0.

• Solution: ⇥(z)⇤ z� as z ⇤ 0,

⇥(x, z) = Cz
d
2 J�� d

2
(zM) , � = 1

2

⇧
d +

⌦
d2 + 4µ2R2

⌃
.

• Normalization

Rd�1
⌥ ⇥�1

QCD

0

dz

zd�1
⇥2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4

�(z) = Czd/2J��d/2(zM)
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

Derived from variation of Action in AdS5

⌅(z = z0 = 1
⇤c

) = 0.

[� d2

dz2 + V(z)]⌅(z) = M2⌅(z)

V(z) = �1�4L2

4z2 ! �1�4L2

4z2 + �4z2

� = 2 + L

V(z) = �1�4L2

4z2 + �4z2

Mµ⇤,Pµ,D,Kµ,

Hard wall model: truncated space

Let �(z) = z3/2�(z)

L = Lz  :    Light-Front orbital angular momentum

�
� d2

dz2
� 1� 4L2

4z2

⇥
�(z) =M2�(z)
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z�

�: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇤(�, b�)

Identify hadron by its interpolating operator at z   --> 0

� = 2 + L

Twist =equivalent 
to dimensions of 
chiral superfields

38

AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ⇤⇥5D{�1 . . . D�m}⇤ (⇥µ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

⇥(x, zo) = 0, given by the zeros of Bessel functions ��,k: M�,k = ��,k�QCD

• Normalizable AdS modes �(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

-4

0

2

4

z

Φ(z)

2-2006
8721A8

Fig: Meson orbital and radial AdS modes for �QCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

z�

z0

�d⇥ np

�� ⇥ ⇥+⇥�

�� ⇥ K+K�

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Match fall-off at small z to conformal twist-dimension 
at short distances

� = 2 + L
twist

O2+L

z�

z0 = 1
⇥QCD

�d⇥ np

�� ⇥ ⇥+⇥�

�� ⇥ K+K�

s = E2
cm = W2 = Q2

Q4GMp(Q
2)
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Φ(z)

10 2 3 4
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8721A19

Fig: Orbital and radial AdS modes in the hard wall model for �QCD = 0.32 GeV .
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Fig: Light meson and vector meson orbital spectrum �QCD = 0.32 GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 23

S = 0 S = 1

m⇡ = m⇢

Hard Wall



 
 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         

November 6, 2012 40

• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically
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Dual QCD Light-Front Wave Equation z ⌃ �, �P (z)⌃ |⇧(P )�
[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Upon substitution z⇧� and ⌅J(�) ⌅ ��3/2+Je�(z)/2 �J(�) in AdS WE
⇤
�zd�1�2J

e�(z)
�z

�
e�(z)

zd�1�2J
�z

⇥
+

�
µR

z

⇥2
⌅

�J(z) = M2�J(z)

find LFWE (d = 4)
�
� d2

d�2
� 1� 4L2

4�2
+ U(�)

⇥
⌅J(�) = M2⌅J(�)

with

U(�) =
1
2
⌃⇥⇥(z) +

1
4
⌃⇥(z)2 +

2J � 3
2z

⌃⇥(z)

and (µR)2 = �(2� J)2 + L2

• AdS Breitenlohner-Freedman bound (µR)2 ⇤ �4 equivalent to LF QM stability condition L2 ⇤ 0

• Scaling dimension ⇤ of AdS mode �̂J is ⇤ = 2 + L in agreement with twist scaling dimension of a

two parton bound state in QCD and determined by QM stability condition

LC 2011 2011, Dallas, May 23, 2011 Page 10
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• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Teramond, Dosch, sjb



 

43

AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjb
Positive-sign dilatone�(z) = e+2z2

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

44

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) �(z)

high Q2



Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np
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• Hadronic gravitational form-factor in AdS space

A�(Q2) = R3
⌅

dz

z3
H(Q2, z) |��(z)|2 ,

where H(Q2, z) = 1
2Q2z2K2(zQ)

• Use integral representation for H(Q2, z)

H(Q2, z) = 2
⌅ 1

0
x dxJ0

⇥
zQ

⇧
1� x

x

⇤

• Write the AdS gravitational form-factor as

A�(Q2) = 2R3
⌅ 1

0
x dx

⌅
dz

z3
J0

⇥
zQ

⇧
1� x

x

⇤
|��(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

���⇤̃qq/�(x, �)
���
2

=
R3

2⇥
x(1� x)

|��(�)|2

�4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

47

Light Front Holography: Unique mapping derived from equality 
of LF and AdS formulae for bound-states and  form factors

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb



 
Confining AdS/QCD  

potential Semiclassical first approximation to QCD 

U(⇣) = 4⇣2 + 22(L + S � 1)

HQED

Coupled Light-Front Fock states

Effective two-particle equation

 Azimuthal  Basis

QCD Meson Spectrum

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

�2 = x(1� x)b2
�

48

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Fixed Light-Front Time  
(Front  form)

AdS/QCD:
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

49

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)

AdS/QCD:



 

50
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Pion has 
zero mass!



 

52
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Quark separation 
increases with L

Pion has 
zero mass!
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L
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equation is similar to the celebrated Schrödinger radial wave equation at fixed t which

describes the quantum-mechanical structure of atomic systems. Internal orbital angular

momentum L and its e�ect on quark kinetic energy plays an explicit role. Thus by using

the AdS/CFT correspondence one obtains a relativistic wave equation applicable to hadron

physics, where the light-front coordinate � plays the role of the radial variable r of the

nonrelativistic theory. For example, the meson eigenvalue equation is
�
� d2

d�2
� 1� 4L2

4�2
+ U(�)

⇥
⇤(�) =M2⇤(�), (1)

where the vast complexity of the QCD interactions among constituents is summed up in

the addition of the e�ective potential U(�), which is then modeled to enforce confinement.

For example, in the soft wall model the potential is U(�) = ⇥4�2 + 2⇥2(J � 1) where J is

the total angular momentum of the hadron. The corresponding wavefunctions of a pion

describe the probability distribution of its constituents for the di�erent orbital and radial

states. The separation of the constituent quark and antiquark in AdS space get larger as

the orbital angular momentum increases. Orbital excitations are also located deeper inside

AdS space (Fig. ??).
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Figure 2: Meson wavefunctions is AdS space in the soft-wall holographic model of
confinement: (a) orbital modes and (b) radial modes. Constituent quark and antiquark
fly away from each other as the orbital and radial quantum number increases.

Hadronic spectrum. Thus AdS/CFT and light-front holography provide a quantum

mechanical wave equation formalism for hadron physics. The soft-wall model, in particular,

appears to provide a very useful first approximation to QCD. The solutions of the light-

front equation determine the masses of the hadrons, given the total internal spin S, the

orbital angular momenta L of the constituents, and the index n, the number of nodes of

the wavefunction in �. For example, if the total quark spin S is zero, the meson bound
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT 
Grigoryan and Radyushkin

Soft Wall 
Model
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Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension ⇥ , ⇥⇥ in the SW model

F (Q2) = �(⇥)
�

�
1+ Q2

4�2

⇥

�
�
⇥ + Q2

4�2

⇥ .

• For ⇥ = N , �(N + z) = (N � 1 + z)(N � 2 + z) . . . (1 + z)�(1 + z).

• Form factor expressed as N � 1 product of poles

F (Q2) =
1

1 + Q2

4�2

, N = 2,

F (Q2) =
2�

1 + Q2

4�2

⇥�
2 + Q2

4�2

⇥ , N = 3,

· · ·

F (Q2) =
(N � 1)!�

1 + Q2

4�2

⇥�
2 + Q2

4�2

⇥
· · ·

�
N�1+ Q2

4�2

⇥ , N.

• For large Q2:

F (Q2)⌅ (N � 1)!
⇤
4�2

Q2

⌅(N�1)

.

Exploring QCD, Cambridge, August 20-24, 2007 Page 43
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e+

e�
��

�+

��

Dressed soft-wall current brings in higher 
Fock states and more vector meson poles
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• Exposed by timelike form factor through 
dressed current.

• Created by confining interaction

• Similar to QCD(1+1) in lcg

Higher Fock States

U(⇣2)

5 Confinement Interaction and Higher Fock States
[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq ⇥ qq, q ⇥ qqq,

qq ⇥ qq and q ⇥ qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P�confinement ⇤ ⇥4
�

dx�d2�x⇥
⇤�+T a⇤

P+

1
(⇧/⇧⇥)4

⇤�+T a⇤

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23
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Timelike poles :

1
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p
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log |F⇡(s)|
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14% four-quark
 probability
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Ptwist 2 = 91%, Ptwist 4 = 3%, Ptwist 5 = 6%
 determined by the ⇢ mass, PDG widths. �⇢000 = �⇢00 .
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FIG. 3. Summary of form factor results, pion and kaon as
|Q2|F (|Q2|), and proton as |Q4|GM (|Q2|)/µp, as functions
of |Q2|. The solid points in the pion and proton panels are
from BaBar ISR measurements [12, 18], the open triangles
are from FNAL pp̄ measurements [3], the open circles are
from the CLEO measurements [4], and the solid squares are
from the present measurements. The solid curves illustrate
the arbitrarily normalized variation of αS for π and K, and
α2
S variation for protons. For explanation of the theoretical

curves for |Q2|F (|Q2|) for pions, see text.

TABLE I. Cross sections for e+e− → π+π−, K+K−, and pp̄
for e+e− annihilations at

√
s = 3772 MeV and 4170 MeV, and

the corresponding form factors of pion, kaon, and proton.

π+π−,K+K− Nπ,K σB (pb) 10Fπ,K |Q2|Fπ,K

pp̄ Np σB (pb) 102GM |Q4|GM/µp√
s = 3772 MeV, |Q2| = 14.2 GeV2

π+π− 661(26) 6.36(25)(36) 0.65(1)(2) 0.92(2)(3)
K+K− 1564(40) 3.95(10)(22) 0.54(1)(1) 0.76(1)(2)
pp̄ 213(15) 0.46(3)(3) 0.88(3)(2) 0.64(2)(2)√
s = 4170 MeV, |Q2| = 17.4 GeV2

π+π− 218(12) 2.89(16)(16) 0.48(1)(1) 0.84(2)(2)
K+K− 644(25) 2.23(9)(12) 0.44(1)(1) 0.77(2)(2)
pp̄ 92(10) 0.29(3)(2) 0.76(4)(2) 0.82(4)(2)

Pion Form Factors—Timelike form factors of pions,
measured by e+e− → π+π−, have been reported by
Babar for 0.09 GeV2 ≤ |Q2| ≤ 8.7 GeV2 by the
ISR method [12]. Our earlier measurement [4] at
|Q2| = 13.48 GeV2, with only 26(5) observed counts,
resulted in Fπ(13.48 GeV2) = 0.075(9). The present re-
sults, Fπ(14.2 GeV2) = 0.065(2) and Fπ(17.4 GeV2) =
0.048(1) are based on 661(26) and 218(12) observed
counts, respectively. These are listed in Table I. The
summed differential cross sections are found to fit the ex-
pected sin2 θ distribution, as shown in Figs. 2(j). In Fig. 3
we plot our results together with all previous results, in-
cluding the indirect result for |Q2| = M2(J/ψ) [13]. As
shown in the figure, all these measurements are in excel-
lent agreement with the pQCD prediction of a αS/|Q2|
variation of the form factors at large momentum trans-
fers. Also shown in the figure are two illustrative the-
oretical predictions. The Q2 behavior of the QCD sum
rule prediction [14] disagrees strongly with the data. The
latest AdS/QCD prediction by Brodsky and de Tera-
mond [15] reproduces the data below 5 GeV2, but falls
to 2/3 of the observed values for |Q2| > 5 GeV2. Czyz
et al. [16] have shown that the measured Fπ(|Q2|) at
|Q2| > 5 GeV2 can be parameterized in a VDM approach,
but only by including hypothesized radial ρ3, ρ4, ρ5 res-
onances.

Kaon Form Factors—Early measurements of timelike
form factors of kaons for |Q2| < 4.4 GeV2, as sum-
marized in Ref. [17], are shown in Fig. 3. The results
of our present measurements at |Q2| = 14.2 GeV2 and
17.4 GeV2 are listed in Table I. The summed differential
cross sections are found to fit the expected sin2 θ dis-
tribution, as shown in Fig. 2(k). In Fig. 3, we show
our present results along with the indirect result for
|Q2| = M2(J/ψ) [13], and our previous measurement
at |Q2| = 13.48 GeV2 [4]. As for pions, all results for
|Q2| > 9 GeV2 follow the αS/|Q2| behavior of the form
factors predicted by pQCD. No theoretical predictions
for kaon timelike form factors exist. An empirical fit to
the data has however been made by Czyz et al. [16], but

Timelike Pion Form Factor

CLEO: Seth et al .

|Q2|F⇡(Q2)|

Consistent with log fall-off of pQCD

68
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Light Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb
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• In terms of n�1 independent transverse impact coordinates b⇤j , j = 1, 2, . . . , n�1,

M2 =
⌅

n

n�1⇧

j=1

⌃
dxjd

2b⇤j⌅
⇥
n(xi,b⇤i)

⌅

⇤

⇥
�⇧2

b��
+ m2

⇤

xq

⇤
⌅n(xi,b⇤i) + interactions

• Relevant variable conjugate to invariant mass in the limit of zero quark masses

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇤j

���

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• For a two-parton system �2 = x(1� x)b2
⇤

• To first approximation LF dynamics depend only on the invariant variable �, and hadronic properties

are encoded in the hadronic mode ⇤(�) from

⌅(x, �,⇧) = eiM�X(x)
⇤(�)⌅
2⇥�

factoring angular ⇧, longitudinal X(x) and transverse mode ⇤(�)

KITPC, Beijing, October 19, 2010 Page 16
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soft wall
confining potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

�
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Relativistic LF radial equation

G. de Teramond, sjb 
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Frame Independent
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U(⇣) = 4⇣2 + 22(L + S � 1)

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

Light-Front Schrödinger Equation
�
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2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 
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U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)
AdS/QCD:
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Prediction from AdS/CFT: Meson LFWF
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⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks
Note coupling 

k2
�, x

Connection of Confinement to TMDs

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



�H(xi, Q)

�M (x,Q) =
� Q

d2�k ⇥qq̄(x,�k�)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x

1� x

k2
� < Q2

�

i

xi = 1

Lepage, sjb

Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE, Conformal 
Invariance

• Compute from valence light-front wavefunction in light-
cone gauge
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Second Moment of  Pion Distribution Amplitude

< �2 >=
� 1

�1
d� �2⇥(�)

� = 1� 2x

�asympt ⇥ x(1� x)
�AdS/QCD ⇥

�
x(1� x)

Braun et al.

Donnellan et al.

< �2 >�= 1/5 = 0.20

< �2 >�= 1/4 = 0.25

Lattice (I) < �2 >�= 0.28± 0.03

Lattice (II) < �2 >�= 0.269± 0.039
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e�

H̄(p̄e+)
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e+

e�

Z

Formation of  Relativistic Anti-Hydrogen

Munger, Schmidt, sjb

Measured at CERN-LEAR and FermiLab 

⇥q ⇥ ��q

��

⇥

p

⇤

⇤̄

q

Coulomb  field

Coalescence of  off-shell co-moving  positron and antiproton

“Hadronization” at the Amplitude Level

Wavefunction maximal at small impact separation and equal rapidity

⌥ = t + z/c

b⇥ � 1
mred�

< p|G
3
µ⌃

m2
Q

|p > vs. < p|F
4
µ⌃

m4
✏

|p >

⇥

cos 2�

+⌅4⇤2

⇧ = t + z/c

yp̄ ⇥ ye+

b⇤ � 1
mred�

< p|G
3
µ⌅

m2
Q

|p > vs. < p|F
4
µ⌅

m4
�

|p >

⇥

cos 2⌃
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs
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Event amplitude 
generator
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   
coalesce quarks via LFWFs
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Hadronization at the Amplitude Level

e+

e�

�⇥

g

q̄

q

pp ⇤ p + J/⇥ + p

e+

e�

�⇥

g

q̄

q

pp ⇤ p + J/⇥ + p

e+

e�

�⇥

g

q̄

q

pp ⇤ p + J/⇥ + p

⇤H(x,↵k⇤, ⇥i)

pH

x,↵k⇤

1� x,�↵k⇤

e+

e�

�⇥

⇤H(x,↵k⇥, �i)

pH

x,↵k⇥

1� x,�↵k⇥

⇥ = x+

e+

e�

⇤(x,↵k⇤, ⇥i)

e+

e�

�⇥

g

q̄

q

⇤H(x,↵k⇤, ⇥i)

pH

x,↵k⇤

1� x,�↵k⇤

e+

e�

�⇥

e+

e�

�⇥

g

q̄

q

pp ⇤ p + J/⇥ + pp

 ⇡(y, `?,�i)

p⇡

yp+
⇡ , yp?⇡ + `?

Construct helicity amplitude using Light-Front Perturbation theory;   
coalesce quarks via LFWFs

No gluons
AdS/QCD 
potential



 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         
November 6, 2012

Off -Shell  T-Matrix

• Quarks and Gluons Off-Shell

• LFPth:  Minimal Time-Ordering Diagrams-Only positive k+

• Jz Conservation at every vertex 

•  Frame-Independent

• Cluster Decomposition

• “History”-Numerator structure universal

• Renormalization- alternate denominators

• LFWF takes Off-shell to On-shell

• Tested in QED: g-2 to three loops
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Event amplitude generator

Roskies, Suaya, sjb

Chueng Ji, sjb
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Fermionic Modes and Baryon Spectrum
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

• Action for Dirac field in AdSd+1 in presence of dilaton background ⇧(z) [Abidin and Carlson (2009)]

S =
⇧

dd+1⌃ge⌅(z)
�
i⌅eM

A �ADM⌅ + h.c + ⇧(z)⌅⌅� µ⌅⌅
⇥

• Factor out plane waves along 3+1: ⌅P (xµ, z) = e�iP ·x⌅(z)
⌃
i
⇤
z�⌦m�⌦ m + 2�z

⌅
+ µR + ⇥2z

⌥
⌅(x⌦) = 0.

• Solution (⌅ = µR� 1
2 , ⌅ = L + 1)

⌅+(z) ⇤ z
5
2+⇤e��2z2/2L⇤

n(⇥2z2), ⌅�(z) ⇤ z
7
2+⇤e��2z2/2L⇤+1

n (⇥2z2)

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

M2 = 4⇥2(n + L + 1)

• Obtain spin-J mode ⇤µ1···µJ�1/2
, J > 1

2 , with all indices along 3+1 from ⌅ by shifting dimensions

• Large NC : M2 = 4⇥2(NC + n + L� 2) =⌅ M ⇤
⌃

NC ⇥QCD

Escuela de Fı́sica, UCR, December 1, 2010 Page 25

GdT and sjb, PRL 94, 201601 (2005)

positive parity

Yukawa interaction 
in 5 dimensions 

83



 
 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         

November 6, 2012 84

Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(��(⇤)�M)⌃(⇤) = 0,

in terms of the matrix-valued operator �

�⇤(⇤) = �i

⇤
d

d⇤
�

⇧ + 1
2

⇤
⇥5 � ⌅2⇤⇥5

⌅
,

and its adjoint �†, with commutation relations

⇧
�⇤(⇤),�†

⇤(⇤)
⌃

=
�

2⇧ + 1
⇤2

� 2⌅2

⇥
⇥5.

• Solutions to the Dirac equation

⌃+(⇤) ⇤ z
1
2+⇤e�⇥2�2/2L⇤

n(⌅2⇤2),

⌃�(⇤) ⇤ z
3
2+⇤e�⇥2�2/2L⇤+1

n (⌅2⇤2).

• Eigenvalues

M2 = 4⌅2(n + ⇧ + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49

⌫ = L + 1

Soft Wall
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Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

1
2 0 1 N 1

2
+
(1440)

1
2 0 2 N 1

2
+
(1710)

3
2 0 0 �

3
2
+
(1232)

3
2 0 1 �

3
2
+
(1600)

70 1
2 1 0 N 1

2
�
(1535) N 3

2
�
(1520)

3
2 1 0 N 1

2
�
(1650) N 3

2
�
(1700) N 5

2
�
(1675)

3
2 1 1 N 1

2
�

N 3
2
�
(1875) N 5

2
�

1
2 1 0 �

1
2
�
(1620) �

3
2
�
(1700)

56 1
2 2 0 N 3

2
+
(1720) N 5

2
+
(1680)

1
2 2 1 N 3

2
+
(1900) N 5

2
+

3
2 2 0 �

1
2
+
(1910) �

3
2
+
(1920) �

5
2
+
(1905) �

7
2
+
(1950)

70 1
2 3 0 N 5

2
�

N 7
2
�

3
2 3 0 N 3

2
�

N 5
2
�

N 7
2
�
(2190) N 9

2
�
(2250)

1
2 3 0 �

5
2
�

�

7
2
�

56 1
2 4 0 N 7

2
+

N 9
2
+
(2220)

3
2 4 0 �

5
2
+

�

7
2
+

�

9
2
+

�

11
2

+
(2420)

70 1
2 5 0 N 9

2
�

N 11
2
�

3
2 5 0 N 7

2
�

N 9
2
�

N 11
2
�
(2600) N 13

2
�

1

PDG 2012
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L

M2
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LF Virial Theorem: 
Nucleon Mass: 1/2 from LFKE  

and 1/2 from Confinement Potential
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de Teramond, sjb 

See also Forkel, Beyer, Federico, Klempt
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2 or 3

2 .

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].

45

the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2 for the negative-

parity spin-12 baryons and ν = µR + 1
2 for the positive parity spin-32 baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-12 positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin-32 negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 12 negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-32 minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2 or 3

2 . It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular

46

positive parity

negative parity

κ = 0.49 GeV κ = 0.51 GeV
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6 E. Klempt et al.: �� resonances, quark models, chiral symmetry and AdS/QCD
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Fig. 2. Regge trajectory for �� resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], �(1930)D35 was interpreted as L = 3, S = 1/2
excitation. The new evidence for �(1940)D33 – which
seems to be a natural spin partner of �(1930)D35 – sug-
gests L = 1, S = 3/2, N = 1 quantum numbers for both,
and the two-star �(1900)S31 to be the natural third part-
ner to complete a spin triplet. In the interpretation of
[17], one could of course also argue that �(1900)S31 and
�(1940)D33 have L = 1, S = 1/2, N = 1, and �(1930)D35

and a missing �G37 below 2GeV are L = 3, S = 1/2 ex-
citations.

At high masses, some problems remain. In particular
�(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between
hard-wall AdS/QCD and data in the 1.7 GeV region. Above
1.8GeV, some inconsistencies with the hard wall solution
exist, in particular the existence of �(1940)D33 [20,21]
and the non-observation of a �G37 candidate with mass
between 1.9 and 2GeV are di⌅cult to reconcile with hard-
wall AdS/QCD. But overall, the trend of most established
states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and
baryons was predicted using AdS/QCD in the metric soft-
wall approximation. Relations between ground state masses
and trajectory slopes

M2 = 4⇥2(L + N + 1/2) for mesons
M2 = 4⇥2(L + N + 3/2) for baryons (A)

were derived. Using the slope of the � trajectory, masses
were calculated. They are plotted as a function of L+N in
Fig. 2. The two states indicated by arrows are those found
in [20,21]. While the positive-parity �(1920)P33 has three
stars in the PDG rating, the negative-parity �(1940)D33

had one star only. Both states were not observed in the
latest analysis of Arndt et al. [3] on elastic ⇤N scattering.

The four positive- and negative-parity states between
1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)1; the seven states (4,5) should have 1.92
GeV. The predicted masses for L + N = 3 (6,7) and 4
(8,9) are 2.20 and 2.42GeV, respectively. The trajectory
continues with the calculated masses 2.64 for L + N = 5
and 2.84 GeV for L + N = 6. Experimentally, the highest
mass state is �(2950)K3 15 which requires L = 6. In this
interpretation, �(2750)I3 13 has L = 5, S = 3/2 and N =
1 and should be degenerate in mass with �(2950)K3 15.
Both are expected to have a mass of 2.84 GeV which is not
incompatible with the experimental findings even though
the mass di�erence of 200 MeV between the two states
does not support their expected mass degeneracy.

An early interpretation of strings was proposed by
Nambu [36]. He assumed that the gluon flux between the
two quarks is concentrated in a rotating flux tube or a
rotating string with a homogeneous mass density. Nambu
derived a linear relation between squared mass and or-
bital angular momentum, M2 � L. This mechanical pic-
ture was further developed by Baker and Steinke [37] and
by Baker [38] to a field theoretical approach. For mesons,
the functional dependence (A) was derived.

The relation (A) between �� masses and L and N has
been derived earlier in a phenomenological analysis of the
baryon mass spectrum [35]. For octet and singlet baryons,
one term ascribed to instanton-induced interactions was
required to reproduce the full mass spectrum of all baryon
resonances having known spin and parity.

The striking agreement between the measured baryon
excitation spectrum and the predictions [18,19] based on
AdS/QCD and the success of the phenomenological mass
formula [35] pose new questions. In both cases, the baryon
masses depend on the number of orbital and radial exci-
tations just as mesons. But baryons have an extra degree

1 The �1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fig. 2. Regge trajectory for �� resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], �(1930)D35 was interpreted as L = 3, S = 1/2
excitation. The new evidence for �(1940)D33 – which
seems to be a natural spin partner of �(1930)D35 – sug-
gests L = 1, S = 3/2, N = 1 quantum numbers for both,
and the two-star �(1900)S31 to be the natural third part-
ner to complete a spin triplet. In the interpretation of
[17], one could of course also argue that �(1900)S31 and
�(1940)D33 have L = 1, S = 1/2, N = 1, and �(1930)D35

and a missing �G37 below 2GeV are L = 3, S = 1/2 ex-
citations.

At high masses, some problems remain. In particular
�(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between
hard-wall AdS/QCD and data in the 1.7 GeV region. Above
1.8GeV, some inconsistencies with the hard wall solution
exist, in particular the existence of �(1940)D33 [20,21]
and the non-observation of a �G37 candidate with mass
between 1.9 and 2GeV are di⌅cult to reconcile with hard-
wall AdS/QCD. But overall, the trend of most established
states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and
baryons was predicted using AdS/QCD in the metric soft-
wall approximation. Relations between ground state masses
and trajectory slopes

M2 = 4⇥2(L + N + 1/2) for mesons
M2 = 4⇥2(L + N + 3/2) for baryons (A)

were derived. Using the slope of the � trajectory, masses
were calculated. They are plotted as a function of L+N in
Fig. 2. The two states indicated by arrows are those found
in [20,21]. While the positive-parity �(1920)P33 has three
stars in the PDG rating, the negative-parity �(1940)D33

had one star only. Both states were not observed in the
latest analysis of Arndt et al. [3] on elastic ⇤N scattering.

The four positive- and negative-parity states between
1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)1; the seven states (4,5) should have 1.92
GeV. The predicted masses for L + N = 3 (6,7) and 4
(8,9) are 2.20 and 2.42GeV, respectively. The trajectory
continues with the calculated masses 2.64 for L + N = 5
and 2.84 GeV for L + N = 6. Experimentally, the highest
mass state is �(2950)K3 15 which requires L = 6. In this
interpretation, �(2750)I3 13 has L = 5, S = 3/2 and N =
1 and should be degenerate in mass with �(2950)K3 15.
Both are expected to have a mass of 2.84 GeV which is not
incompatible with the experimental findings even though
the mass di�erence of 200 MeV between the two states
does not support their expected mass degeneracy.

An early interpretation of strings was proposed by
Nambu [36]. He assumed that the gluon flux between the
two quarks is concentrated in a rotating flux tube or a
rotating string with a homogeneous mass density. Nambu
derived a linear relation between squared mass and or-
bital angular momentum, M2 � L. This mechanical pic-
ture was further developed by Baker and Steinke [37] and
by Baker [38] to a field theoretical approach. For mesons,
the functional dependence (A) was derived.

The relation (A) between �� masses and L and N has
been derived earlier in a phenomenological analysis of the
baryon mass spectrum [35]. For octet and singlet baryons,
one term ascribed to instanton-induced interactions was
required to reproduce the full mass spectrum of all baryon
resonances having known spin and parity.

The striking agreement between the measured baryon
excitation spectrum and the predictions [18,19] based on
AdS/QCD and the success of the phenomenological mass
formula [35] pose new questions. In both cases, the baryon
masses depend on the number of orbital and radial exci-
tations just as mesons. But baryons have an extra degree

1 The �1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2
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Chiral Features of Soft-Wall 
AdS/QCD Model

90

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >

• Boost Invariant

• Trivial LF vacuum.

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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Using SU(6) flavor symmetry and normalization to static quantities
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Preliminary
From overlap of L = 1 and L = 0 LFWFs
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Nucleon Transition Form Factors
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AdS\QCD
Light-Front 
Holography

G. de Teramond, 
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Pion Transition Form-Factor
[S. J. Brodsky, F.-G. Cao and GdT, arXiv:1005.39XX]

0

• Definition of ⇡ � � TFF from �⇤⇡0 ! � vertex in the amplitude e⇡ ! e�

�

µ

= �ie2F
⇡�

(q2

)✏
µ⌫⇢�

(p
⇡

)

⌫

✏
⇢

(k)q
�

, k2

= 0

• Asymptotic value of pion TFF is determined by first principles in QCD:

Q2F
⇡�

(Q2 !1) = 2f
⇡

[Lepage and Brodsky (1980)]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]
Z

d4x

Z
dz ✏LMNPQA
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@
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@
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4�(4)
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(q2

)✏µ⌫⇢�✏
µ

(q)(p
⇡

)

⌫

✏
⇢

(k)q
�

• Find for A
z

/ �

⇡

(z)/z

F
⇡�

(Q2

) =

1

2⇡

Z 1

0

dz

z
�

⇡

(z)V
�
Q2, z

�

with normalization fixed by asymptotic QCD prediction

• V (Q2, z) bulk-to-boundary propagator of �⇤

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 45

Cao, de Teramond, sjb
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Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

⇤
d4x

⇤
dz ⇥LMNPQAL�MAN�P AQ

⇤ (2⌅)4�(4) (p⇧ + q � k) F⇧�(q2)⇥µ⌅⌃⌥⇥µ(q)(p⇧)⌅⇥⌃(k)q⌥

• Take Az ⇧ �⇧(z)/z, �⇧(z) =
⌃

2Pqq ⇤ z2e�⇥2z2/2, ⌥�⇧|�⇧� = Pqq

• Find
�
⇧(x) =

⌦
3f⇧x(1� x), f⇧ =

⌃
Pqq ⇤/

⌦
2⌅

⇥

Q2F⇧�(Q2) =
4⌦
3

⇤ 1

0
dx

⇧(x)
1� x

⌅
1� e�PqqQ2(1�x)/4⇧2f2

� x
⇧

normalized to the asymptotic DA [Pqq = 1 ⌅ Musatov and Radyushkin (1997)]

• Large Q2 TFF is identical to first principles asymptotic QCD result Q2F⇧�(Q2 ⌅⌃) = 2f⇧

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25

G.P. Lepage, 
sjb
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Photon-to-pion transition form factor

F.-G. Cao, 
G. de Teramond, 

sjb

where � = 1/137. The form factor F⇥�(0) is also well described by the Schwinger, Adler,

Bell and Jackiw anomaly [31] which gives

F SABJ
⇥� (0) =

1

4⇤2f⇥
, (16)

in agreement within a few percent of the observed value obtained from the the decay

⇤0 ⇥ ⇥⇥.

Taking Pqq̄ = 0.5 in (14) one obtains a result in agreement with (16). Thus (13) repre-

sents a description on the pion TFF which encompasses the low-energy non-perturbative

and the high-energy hard domains, but includes only the asymptotic DA of the qq̄ com-

ponent of the pion wave function at all scales. The results from (13) are shown as dotted

curves in Figs. 1 and 2 for Q2F⇥�(Q2) and F⇥�(Q2) respectively. The calculations agree

reasonably well with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) , but disagree with BABAR’s large Q2 data.
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FIG. 1: The ��� ⇥ ⇥0 transition form factor shown as Q2F⇥�(Q2) as a function of Q2 = �q2.

The dotted curve is the asymptotic result predicted by the Chern-Simons form. The dashed

and solid curves include the e�ects of using a confined EM current for twist-two and twist-two

plus twist-four respectively. The data are from [15, 18, 19].

9

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = �

⇤
1 +

Q2

4�2

⌅
U

⇤
Q2

4�2
, 0, �2z2

⌅
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 ⇥ ⇤. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

4�2 e�⇥2z2x/(1�x). (18)

Inserting the pion wave function (5) for twist ⇤ = 2 and the confined EM current (18)

in the amplitude (3) one finds

F⇤�(Q
2) =

Pqq̄

⇥2f⇤

⇧ 1

0

dx

(1 + x)2
xQ2Pqq̄/(8⇤2f2

⇥). (19)

Eq. (19) gives the same value for F⇤�(0) as (14) which was obtained with the free current.

Thus the anomaly result F⇤�(0) = 1/(4⇥2f⇤) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2F⇤�(Q
2) = 8f⇤

⇧ 1

0

dx
1� x

(1 + x)3

�
1� xQ2Pqq̄/(8⇤2f2

⇥)
⇥

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 ⇥ ⇤, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2F⇤�(Q2 ⇥⇤) = 2f⇤. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

Lepage,  sjb

(Chern-Simons)
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5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb
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AdS/QCD and Light-Front Holography

• AdS/QCD: Incorporates scale transformations 
characteristic of QCD with a single scale -- RGE

• Light-Front Holography; unique connection of 
AdS5 to Front-Form

• Profound connection between gravity in 5th 
dimension and physical 3+1 space time at fixed LF 
time τ

• Gives unique interpretation of z in AdS to 
physical variable ζ in 3+1 space-time
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An analytic first approximation to QCD

• As Simple as Schrödinger Theory in Atomic Physics

• LF radial variable  ζ conjugate to invariant mass squared

• Relativistic, Frame-Independent, Color-Confining

• QCD Coupling at all scales: Essential for Gauge Link 
phenomena

• Hadron Spectroscopy and Dynamics from one parameter 

• Wave Functions, Form Factors, Hadronic Observables, 
Constituent Counting Rules

• Insight into QCD Condensates: Zero cosmological 
constant!

• Systematically improvable with DLCQ Methods



AdS/QCD + Light-Front Holography 
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and Conformal 
SO(4,2) symmetries of 3+1 space 

to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD

Conformal behavior at short distances
+ Confinement at large distance

Counting rules for Hard Exclusive 
Scattering

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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Applications of Light-Front holography

• Diagonalize the LF Hamiltonian on the AdS/QCD basis

• Analytic form for two-photon reactions - analytic connection to 
DVCS - light-by-light contribution to g-2

• Set the factorization scale using AdS/QCD LFWFs

• Hadronization at the Amplitude Level

• Compute QCD amplitudes at the soft scale: e.g. Sivers SSA 
Asymmetry and  Diffractive DDIS

• Sublimated gluons: Interplay of confinement and gluon exchange

•  QCD puzzles:  dominance of quark interchange in hard hadron-
hadron scattering; 
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J/ ! ⇢⇡
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Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter, LF

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandy⇡� < 0|q̄�5q|⇡ >

m2
⇡ = � (mu + md)

f⇡
< 0|iq̄�5q|⇡ >

m2
⇡ = � (mu + md)

f2
⇡

< 0|q̄q|0 >
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-

ū

⇡� d

+

-⇡� d

+
-

ū
Lz = +1, Sz = �1

Lz = 0, Sz = 0

Running constituent mass at vertex

-

Couples to

Angular 
Momentum 

Conservation

⇠ f⇡

< ⇡|q̄�5q|0 > ⇠ ⇢⇡

Jz =
nX

i

Sz
i +

n�1X

i

Lz
i

Light-Front Pion Valence Wavefunctions
Sz

ū + Sz
d = +1/2� 1/2 = 0

Sz
ū + Sz

d = �1/2� 1/2 = �1

< ⇡|q̄�µ�5q|0 >
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�⇡(k;P ) = i�5E⇡(k, P ) + �5� · PF⇡(k;P )
+�5� · kG⇡(k;P )� �5�µ⌫kµP ⌫H⇡(k;P )

⇡��⇡(k;P )
P/2 + k

P/2� k

< 0|q̄�5q|⇡ >< 0|q̄�5�µq|⇡ >Allows both and

General Form  of  Bethe-Salpeter Wavefunction

⇡�
+

⇡�

ū

-

d

-

-
Sz = 0, Lz = 0 Sz = �1, Lz = +1

LFWFs
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• Condensates do not exist as space-time-independent 
phenomena

• Property of hadron wavefunctions: Bethe-Salpeter or Light-
Front:   “In-Hadron Condensates”

• Find:

• Zero contribution to cosmological constant!     Included in 
hadron mass

• ρπ  survives for small mq -- enhanced running mass from gluon 
loops / multiparton Fock states

New perspective on QCD `Condensates’

< 0|q̄q|0 >

f⇡
! � < 0|iq̄�5q|⇡ >= ⇢⇡

< 0|q̄i�5q|⇡ > similar to < 0|q̄�µ�5q|⇡ >

Maris, Roberts, Tandy
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New perspectives on the quark condensate

Stanley J. Brodsky,1,2 Craig D. Roberts,3,4 Robert Shrock,5 and Peter C. Tandy6
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.

DOI: 10.1103/PhysRevC.82.022201 PACS number(s): 11.30.Rd, 14.40.Be, 24.85.+p, 11.15.Tk

Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on 〈0|q̄q|0〉, where |0〉 is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value 〈0|q̄q|0〉.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
〈q̄q〉0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d, is the current-quark mass at a

renormalization scale ζ ; and 〈q̄q〉0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix
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DARK ENERGY AND
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I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

QCD Problem Solved if Quark and Gluon condensates reside 

within hadrons, not vacuum! 
R. Shrock, sjb arXiv:0905.1151 [hep- th],   Proc. Nat’l. Acad. Sci., (in press); 

``Condensates in Quantum Chromodynamics and the Cosmological Constant.”111
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Light-Front vacuum can simulate empty universe

• Independent of observer frame

• Causal

• Lowest invariant mass state M= 0.

• Trivial up to k+=0 zero modes-- already normal-ordering

• Higgs theory consistent with trivial LF vacuum (Srivastava, sjb)

• QCD and AdS/QCD: In hadron condensates (Maris, Tandy 
Roberts)

• QED vacuum; no loops

• Zero cosmological constant

Shrock, Tandy, Roberts, sjb

112



 
 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         

November 6, 2012 113

Effective Confinement potential from soft-wall AdS/QCD gives  Regge 
Spectroscopy plus higher-twist correction to current propagator 

e+e� ! X, ⌧ decay, Q ¯Q phenomenology

�⇤ �⇤

Re+e�(s) = Nc

X

q

e2
q(1 + O4

s2
+ · · · )

q

q̄

mimics dimension-4 gluon condensate                                           in 

light-quark meson spectra

 ' 0.5 GeV

< 0|↵s

⇡
Gµ⌫(0)Gµ⌫(0)|0 >

M2 = 42(n + L + S/2)
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QCD Myths
• Anti-Shadowing is Universal

• ISI and FSI are higher twist effects and universal

• High transverse momentum hadrons arise only from 
jet fragmentation  -- baryon anomaly!

• heavy quarks only from gluon splitting

• renormalization scale cannot be fixed

• QCD condensates are vacuum effects

• Infrared Slavery

• Nuclei are composites of nucleons only

• Real part of DVCS arbitrary

114



 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         
November 6, 2012

• Hadroproduction at large transverse momentum does not  derive exclusively 
from 2 to 2 scattering subprocesses: Baryon Anomaly at RHIC Sickles, sjb

• Color Transparency  Mueller, sjb;  Diffractive Di-Jets and Tri-jets Strikman et al

• Heavy quark distributions do not derive exclusively from DGLAP or gluon 
splitting -- component intrinsic to hadron wavefunction.  Hoyer, et al

• Higgs production at large xF  from intrinsic heavy quarks   Kopeliovitch, Goldhaber, 
Schmidt, Soffer, sjb

• Initial and final-state interactions are not always power suppressed in a hard 
QCD reaction: Sivers Effect, Diffractive DIS, Breakdown of Lam Tung PQCD 
Relation  Schmidt, Hwang, Hoyer, Boer, sjb; Collins

• LFWFS are universal, but measured nuclear parton distributions are not 
universal -- antishadowing  is flavor dependent Schmidt, Yang, sjb

• Renormalization scale is not arbitrary;  multiple scales, unambiguous at given 
order.  Disentangle running coupling and conformal effects,                                                                                                                                
Skeleton expansion:       Gardi, Grunberg, Rathsman, sjb

• Quark and Gluon condensates reside within hadrons: Shrock, sjb

Novel  QCD Phenomena and Perspectives 
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• Test QCD to maximum precision

• High precision determination of               at all scales

• Relate observable to observable --no scheme or scale 
ambiguity

• Eliminate renormalization scale ambiguity in a scheme-
independent manner

• Relate renormalization schemes without ambiguity

• Maximize sensitivity to new physics at the colliders 

↵s(Q2)

Goals

“Principle of Maximum Conformality”
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The Renormalization Scale Problem
• No renormalization scale ambiguity in QED 

• Gell Mann-Low QED Coupling defined from physical observable 

• Sums all Vacuum Polarization Contributions

• Recover conformal series

• Renormalization Scale in QED scheme: Identical to Photon Virtuality

• Analytic: Reproduces lepton-pair thresholds -- number of active leptons set

• Examples:  muonic atoms, g-2, Lamb Shift

• Time-like and Space-like QED Coupling related by analyticity

• Uses Dressed Skeleton Expansion

• Results are scheme independent!

•
Predictions for physical observables 

cannot be scheme dependent
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Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

Gell-Mann--Low Effective Charge



 
 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         

November 6, 2012

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

This is very important!

This is very important!

This is very important!

This is very important!

+

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

All-orders lepton-loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

⇧�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

�(t, t0) = �(t)��(t0)
1��(t0)

t = �Q2 < 0

�(Q2) =

QED Effective Charge
��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

Initial scale  t0  is arbitrary -- Variation gives RGE Equations
Physical renormalization scale  t  not arbitrary! 

119



• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.   This 
is the purpose of the running coupling!

• If one chooses a different initial scale, one must sum an infinite number of 
graphs -- but always recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!     

Electron-Electron Scattering in QED

t u



  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb

Features of BLM/PMC Scale Setting

• “Principle of Maximum Conformality”

• All terms associated with nonzero beta function summed into running 
coupling

• Standard procedure in QED

• Resulting series identical to conformal series 

• Renormalon n! growth of PQCD coefficients from beta function 
eliminated!

• Scheme Independent  !!!

• In general, BLM/PMC scales depend on all invariants

• Single Effective PMC scale at NLO

Di Giustino, Wu, Mojaza, sjb



 
 Stan Brodsky AdS/QCD and Light-Front HolographyInstitute Theoretical Physics TU Vienna         

November 6, 2012

O = C(↵s(Q⇤2)) + D(
m2

q

Q2
) + E(

⇤2
QCD

Q2
) + F (

⇤2
QCD

m2
Q

) + G(
m2

q

m2
Q

)

BLM/PMC: Absorb β-terms into running coupling

QCD Observables

Scale-Free 
Conformal Series

Running Coupling
Effects

O = C(↵s(µ
2
0)) + B(� log

Q2

µ2
0

) + D(

m2
q

Q2
) + E(

⇤

2
QCD

Q2
) + F (

⇤

2
QCD

m2
Q

) + G(

m2
q

m2
Q

)

Intrinsic Heavy 
Quarks

Higher Twist from 
Hadron Dynamics

Light by Light 
Loops
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Eliminating the Renormalization Scale Ambiguity for Top-Pair Production 
Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu 
 SJB

tt̄ asymmetry predicted by pQCD NNLO within
1 � of CDF/D0 measurements using PMC/BLM scale setting

Using conventional guess for 
renormalization scale and range

Experimental asymmetry

PMC Prediction
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Principle of Maximum Conformality

Xing-Gang Wu 
Leonardo  di Giustino, SJB

Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity!

Result is independent of 
Renormalization scheme 

and initial scale!

Same as QED Scale Setting

Apply to Evolution kernels, 
hard subprocesses

Eliminates unnecessary 
systematic uncertainty

PMC/BLM

Need to set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...
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Relate Observables to Each Other

• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Conformal Template

• Example: Generalized Crewther Relation

125
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[1 + �R(s⇥)
⇥ ][1� �g1(q

2)
⇥ ] = 1

⌅
s⇥ ⇤ 0.52Q

[1 + �R(s⇥)
⇥ ][1� �g1(q

2)
⇥ ] = 1

⌅
s⇥ ⇤ 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

Both observables go through new quark thresholds
at commensurate scales!
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limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED

127

CF =
N2

C � 1
2NC
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New perspectives on the quark condensate
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.

DOI: 10.1103/PhysRevC.82.022201 PACS number(s): 11.30.Rd, 14.40.Be, 24.85.+p, 11.15.Tk

Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on 〈0|q̄q|0〉, where |0〉 is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value 〈0|q̄q|0〉.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
〈q̄q〉0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d, is the current-quark mass at a

renormalization scale ζ ; and 〈q̄q〉0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix

0556-2813/2010/82(2)/022201(5) 022201-1 ©2010 The American Physical Society
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Casher and Susskind Maris, Roberts, Tandy Shrock and sjb 

Quark and Gluon condensates reside 

within hadrons, not vacuum 

• Light-Front Quantization

• Bound-State Dyson Schwinger Equations 

• AdS/QCD

• Implications for cosmological constant --                      
Eliminates  45 orders of magnitude conflict
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QCD Lagrangian

Hadron  Masses and Observables

Lattice Gauge Theory Light-Front Hamiltonian

DLCQ

 Predict Hadron Properties from First Principles!

Effective Field Theory 
Methods

SCET, ChPT, ...

PQCD
Evolution Equations

Counting Rules

AdS/QCD!

Light-Front 
Holography

Bound-State 
Dynamics!

Confinement!
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Light Front Holography: Unique mapping derived from equality 
of LF and AdS formulae for bound-states and  form factors

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

Light-Front Holography 
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 
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Frame Independent!
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)



 

RGE and LF Hamiltonians: 
Glazek & Wilson 

DLCQ: 
Hornbostel, Pauli, & SJB

Pinsky, Hiller
 

LFWFs and Exclusive QCD: 
Lepage and SJB, Efremov, Radyushkin

Renormalization of HLF

Hiller, Chabysheva, Pauli, Pinsky, McCartor, Suaya, sjb
Rotation Invariance, Regularization

Karmanov, Mathiot

LF Quantization 
Bjorken, Kogut, Soper, Susskind

Zero-Modes: Standard Model
Srivastava, sjb 133
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Exploring QCD, Cambridge, August 20-24, 2007 Page 9
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c
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xi = k+

P+ = k0+k3

P0+Pz
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d lnQ2 < 0
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