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Truth is stranger than fiction, but it is because 
Fiction is obliged to stick to possibilities. 
                              —Mark Twain

• Although we know the QCD Lagrangian, we have 
only begun to understand its remarkable 
properties and features.

• Novel QCD Phenomena: hidden color, color 
transparency, strangeness asymmetry, intrinsic 
charm, anomalous heavy quark phenomena,  
anomalous spin effects, single-spin 
asymmetries, odderon, diffractive deep inelastic 
scattering, rescattering, shadowing, non-
universal antishadowing ...
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Chicago-Princeton
Collaboration

x⇥ = xq̄

The p/⇥+ and p̄/⇥� ratios as a function of
pT increase dramatically to values ⇥ 1 as a
function of centrality in Au + Au collisions
at RHIC which was totally unexpected and
is still not fully understood.
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snE d⇤

d3p
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Dramatic change in 
angular distribution at 

large xF

Direct Subprocess Prediction

 Phys.Rev.Lett.55:2649,1985

Example of a “higher-twist 
direct” subprocess

Q2 = M2
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! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1

4Paul Hoyer Jyväskylä 27.3 2007

25

! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1

“Direct Subprocess”

Berger, sjb 
Khoze, Brandenburg, Muller, sjb

Hoyer Vanttinen

Light-Front Wavefunctions from AdS/CFT
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Pion appears directly in subprocess at large xF
All of the pion’s momentum is transferred to the lepton pair

Lepton Pair is produced longitudinally polarized

Initial State 
Interaction



 

Crucial Test of Leading -Twist QCD:
Scaling at fixed xT

Parton model:    neff  = 4

As fundamental as Bjorken scaling  in DIS

scaling law: neff  =  2 nactive - 4

xT =
2pT�

s

Bjorken, Kogut, Soper; Blankenbecler, Gunion, sjb; 
Blankenbecler, Schmidt

E
d�

d3p
(pp! HX) =

F (xT , ✓cm)
pneff

T
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Review of hard scattering and jet analysis Michael J. Tannenbaum
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Figure 9: (left) xT scaling [52] of direct photon data in p-p and p-p̄ collisions. The quantity plotted is

(
√

s)n ×Ed3σ/dp3(xT ) with n = 5.0. (right) xT scaling of jet cross sections measured in p-p̄ collisions by

CDF and D0 [55]. The quantity plotted is the ratio of p4
T times the invariant cross section as a function of

xT for
√

s = 630 and 1800 GeV. Note that the theory curves are plotted in the same way in order to avoid as

much as possible uncertainties from the various parton distribution functions used.

of approximately 15 GeV/fm3. The theory curve appears to show a reduction in suppression with

increasing pT , while, as noted above, the data appear to be flat to within the errors, which clearly

could still be improved.

It is unreasonable to believe that the properties of the medium have been determined by a

theorist’s line through the data which constrains a few parameters of a model. The model and

the properties of the medium must be able to be verified by more detailed and differential mea-

surements. All models of medium induced energy loss [60] predict a characteristic dependence of

the average energy loss on the length of the medium traversed. This is folded into the theoretical

calculations with added complications that the medium expands during the time of the collision,

etc [61]. In an attempt to separate the effects of the density of the medium and the path length

traversed, PHENIX [33, 62] has studied the dependence of the π0 yield as a function of the an-

gle (Δφ ) to the reaction plane in Au+Au collisions (see Fig. 12). For a given centrality, variation

of Δφ gives a variation of the path-length traversed for fixed initial conditions, while varying the

centrality allows the initial conditions to vary. Clearly these data reveal much more activity than

the reaction-plane-integrated RAA (Fig. 11) and merit further study by both experimentalists and

theorists.

The point-like scaling of direct photon production in Au+Au collisions indicated by the ab-

13

E d⌅
d3p

(pp� ⇥X)

⇤
snE d⌅

d3p
(pp� ⇥X) at fixed xT

� ⇥ Q2

m2

d⌅
dxF

(pA� J/⇧X)

d⌅
dxF

(⇤A� J/⇧X)

xF

xT-scaling of direct 
photon production: 

consistent with 
PQCD

Review of hard scattering and jet analysis Michael J. Tannenbaum

a given
√

s fall below the asymptote at successively lower values of xT with increasing
√

s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for π0 production in p-p

collisions at
√

s = 200 GeV [30] with NLO pQCD predictions over the range 2.0 ≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] π0 invariant cross section at mid-rapidity from p-p collisions at
√

s = 200 GeV,

together with NLO pQCD predictions from Vogelsang [31, 32]. a) The invariant differential cross section for

inclusive π◦ production (points) and the results from NLO pQCD calculations with equal renormalization

and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive π0 invariant yield in Au+Au central collisions at
√

sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the π0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for π0

production can be fit to the form

Ed3σ/dp3 ∝ p−n
T (3.3)
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FIG. 3: Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the

available pT range. Shown are data for central (0 − 5%) and for peripheral (60 − 90%) collisions.

law Ed3σ/d3p(pp → π+X) ∝ p−8.2
T giving nactive = 6 may indicate a quark-quark scattering

process which produces in addition to the incoming quarks a qq̄ pair, which becomes the

observed pion with high transverse momentum. This process has been analyzed within the

Constituent Interchange Model (CIM) [1], where an incoming qq̄ pair collides with a quark

by interchanging a quark and antiquark. The CIM is motivated by the inclusive to exclusive

transition mentioned above and is in good agreement with the Chicago-Princeton (CP) data

[15]. The model even can reproduce the absolute normalization of the inclusive cross section.

Obviously, the production mechanism for high pT hadrons changes from
√

s = 20 GeV to
√

s = 200 GeV. For constituent interchange longitudinal momenta of O(1 GeV) can still be

accommodated in the wave function of the proton. When the relevant longitudinal momenta

are about O(10 GeV) at higher energies, interchange is no longer possible which the different

reaction mechanisms with increasing energy.

Moreover, for proton production the pT dependence at Chicago-Princeton energies is

also explained by CIM. A value of n = 12 is a strong indication that higher twists from

wave function effects dominate high pT hadron production around
√

s = 20 GeV. Here the

produced proton is the result of proton scattering on a quark. If protons and pions were

both produced by fragmentation as in the Feynman-Field-Fox parton model, it is hard to

understand how a dimensionless fragmentation function could change n from 8 for pions to

12 for protons.
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Transition to higher twist reactions where
hadron is made in subprocess
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Fig. 5.6.2. Plots of Neff and Feff from the ISR—BS and FNAL—CP data for charged particles. The FNAI. energy pairs are

(19.4-23.8 GeV) marked by X’s and (23.8--27.4 GeV) marked by dots.

up by a jet of hadrons. Another important application of this analysis is the process pp -+ pX,

since it separates the Drell—Yan N 2 process from hadron-produced muons.

These ‘~effcurves also display an important feature of hard scattering mod~lswhich provides
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Scale dependence

Pion scaling exponent extracted vs. p
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Francois Arleo (LAPTH) Higher-twist in hadron production Moriond QCD 2010 10 / 15
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and fragmentation functions. In Fig. 5(a), the new 7 TeV measurement is compared to the em-
pirical scaling observed over a range of lower p̄p collision energies by plotting

⌅
sn E d3⇥/dp3.

The exponent n = 5.1 ± 0.2 that results from a global fit to all data, including
⌅

s = 7 TeV,
is slightly lower than the value n = 5.5 found in Ref. [3] from the global fit to all previous
measurements. For the purpose of reporting the CMS result as a differential cross-section, the
recorded luminosity for the analyzed data sample was measured with an 11% uncertainty, as
described in Ref. [10]. Also, to compare with the published results from the CDF experiment
at
⌅

s = 0.63, 1.8, and 1.96 TeV, the pseudorapidity range has been restricted to |�| < 1.0. As
indicated in the figure, the UA1 cross sections are for |�| < 2.5, although the difference is not
expected to be large.

Our results are consistent over the accessible xT range with the empirical xT-scaling given in
Eq. 4 established at lower energies. This is presented more clearly in Fig. 5(b), which shows
the ratio of the various differential cross sections times

⌅
s5.1 to the result of a global power-law

fit to the lower center-of-mass energy data shown in Fig. 5(a). The function is of the form
p0 · [1 + (xT/p1)]p2 , where p0, p1, and p2 are free parameters and the region below pT =
2 GeV/c has been excluded to avoid complications from soft-particle production. Consider-
ing the somewhat naı̈ve power-law function and the expected non-scaling effects [33], the new
measurement is in reasonable agreement to within a factor of 2 with the global power-law fit
result over its full pT range.
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is slightly lower than the value n = 5.5 found in Ref. [3] from the global fit to all previous
measurements. For the purpose of reporting the CMS result as a differential cross-section, the
recorded luminosity for the analyzed data sample was measured with an 11% uncertainty, as
described in Ref. [10]. Also, to compare with the published results from the CDF experiment
at
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s = 0.63, 1.8, and 1.96 TeV, the pseudorapidity range has been restricted to |�| < 1.0. As
indicated in the figure, the UA1 cross sections are for |�| < 2.5, although the difference is not
expected to be large.
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fit to the lower center-of-mass energy data shown in Fig. 5(a). The function is of the form
p0 · [1 + (xT/p1)]p2 , where p0, p1, and p2 are free parameters and the region below pT =
2 GeV/c has been excluded to avoid complications from soft-particle production. Consider-
ing the somewhat naı̈ve power-law function and the expected non-scaling effects [33], the new
measurement is in reasonable agreement to within a factor of 2 with the global power-law fit
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Jet-triggered charged particle transverse momentum
spectra in pp collisions at 7 TeV
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Abstract

The charged particle transverse momentum spectra are presented for
⇥

s = 7 TeV pp
collisions collected with the CMS detector during the first months of the 2010 LHC
run. To extend the statistical reach of the measurements, calorimeter-based high-ET
jet triggers are employed to enhance yields at high pT. The results are compared to
both leading-order QCD and an empirical scaling of different collision energies with
xT � 2pT/

⇥
s over the pT range up to 140 GeV/c. These measurements also provide

an invaluable reference for studying high-pT particle suppression in the dense QCD
medium produced in the collisions of heavy ions.
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Figure 7: (left) p/π and p̄/π ratio as a function of pT and centrality from Au+Au collisions at
√

sNN = 200

GeV [45]. Open (filled) points are for π± (π0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q → γ+q , (4.3)

with q + q̄ → γ + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from π0 → γ+ γ and η → γ+ γ decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius Δr =
√

(Δη)2 +(Δφ)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (Δη×Δφ ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent γ and π0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√

s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√

s) = 5.0. This is closer to the asymptotic value of n(xT ,
√

s) = 4

11

Particle ratio changes with centrality! 
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sNN = 200

GeV [45]. Open (filled) points are for π± (π0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q → γ+q , (4.3)

with q + q̄ → γ + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from π0 → γ+ γ and η → γ+ γ decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius Δr =
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(Δη)2 +(Δφ)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (Δη×Δφ ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent γ and π0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√

s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√

s) = 5.0. This is closer to the asymptotic value of n(xT ,
√
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 
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Evolve in 
light-front time!

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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Light-Front QCD
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"
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&
)d!
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LQCD � HQCD
LF
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LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory
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n = 3

Measured in DIS
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moment vanishes [22]. The light-cone formalism also properly incorporates Wigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1

sz
i +

n−1∑

j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1
j

∂
∂k2

j

− k2
j

∂
∂k1

j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angular momentum

due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator −i
(
k1 ∂

∂k2 − k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2

electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock-State by Fock-State

Every Vertex
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In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD
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DLCQ
Pauli, Hornbostel, sjb
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 
irreducible interactions--i.e. diagrams having no internal propagators-coupling 
Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= : 3 II 
- - 
0 
. . . . 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 
required to describe an hadronic state make these equations very difficult to solve. 
Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 
state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 
is useful to replace the full set of multi-channel eigenvalue equations by a single 
equation for the dominant wavefunction. To see how this can be done, note that 
the bound state equation, say for positronium, can be rewritten as two equations 
using the projection operator P onto the subspace spanned by eE states, and its 
complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 
(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 
equations for IPs)~ and substituting the result into the first equation, we obtain 
a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 

16 

number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 
irreducible interactions--i.e. diagrams having no internal propagators-coupling 
Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= : 3 II 
- - 
0 
. . . . 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 
required to describe an hadronic state make these equations very difficult to solve. 
Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 
state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 
is useful to replace the full set of multi-channel eigenvalue equations by a single 
equation for the dominant wavefunction. To see how this can be done, note that 
the bound state equation, say for positronium, can be rewritten as two equations 
using the projection operator P onto the subspace spanned by eE states, and its 
complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 
(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 
equations for IPs)~ and substituting the result into the first equation, we obtain 
a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 

16 

LIGHT-FRONT MATRIX EQUATION
G.P. Lepage, sjb

A+ = 0

⇥� ggg � d̄X

⇥� ggg � p̄n̄X

R = �(⇥�d̄X)
�(⇥�p̄n̄X)

R = C

ū(x) ⇥= d̄(x)

s̄(x) ⇥= s(x)

Minkowski space; frame-independent; no fermion doubling; no ghosts

Rigorous Method for Solving Non-Perturbative QCD!

• Light-Front Vacuum = Vacuum of Free Hamiltonian!

Possible zero modesCausal, Frame-Independent
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Goal: an analytic first approximation to QCD
• As Simple as Schrödinger Theory in Atomic Physics

• Relativistic, Frame-Independent, Color-Confining

• QCD Coupling at all scales

• Hadron Spectroscopy

• Light-Front Wavefunctions

• Form Factors, Hadronic Observables, Constituent 
Counting Rules

• Insight into QCD Condensates

• Systematically improvable

• Eliminate scale ambiguities
de Teramond, sjb



 

HQED

[� �2

2mred
+ Ve�(�S,�r)] �(�r) = E �(�r)

[� 1
2mred

d2

dr2
+

1
2mred

⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Includes Lamb Shift, quantum corrections

Coulomb  potential Veff ⇥ VC(r) = ��

r
Semiclassical first approximation to QED 

Bohr Spectrum

QED atoms: positronium and 
muonium

28



 

HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

QCD Meson SpectrumHLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

�2 = x(1� x)b2
�

29

Confining AdS/QCD  
potential 

Semiclassical first approximation to QCD 

U(⇣) = 4⇣2 + 22(L + S � 1)
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!
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AdS/QCD:

U(�) = ⇥4�2 + 2⇥2(L + S � 1)



 

Same slope in n and L

Balmer series of QCD

Spectrum from AdS/QCD
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de Teramond, sjb 

See also Forkel, Beyer, Federico, Klempt
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2 or 3

2 .

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].
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the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2 for the negative-

parity spin-12 baryons and ν = µR + 1
2 for the positive parity spin-32 baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-12 positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin- 32 negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 12 negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-32 minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2 or 3

2 . It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular

46

positive parity

negative parity

κ = 0.49 GeV κ = 0.51 GeV

Baryon Spectroscopy from AdS/QCD and Light-Front Holography
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
1

2
⇥ (11)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i) +
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

,

F3(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
i

2
⇥ (12)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i)�
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

.

The summations are over all contributing Fock states a and struck constituent charges
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Drell, sjb
A(⇤,�⌅) = 1
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�
d�e

i
2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q

x(1� x) b⌅

Nonzero Proton Anomalous Moment -->
Nonzero orbital  quark angular momentum

34

Exact LF Formula for Pauli Form Factor
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

35

Hwang, Schmidt, sjb; 
Holstein et al

Terayev, Okun,  et al:  B(0) Must vanish because of 
Equivalence Theorem 
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moment vanishes [22]. The light-cone formalism also properly incorporates Wigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1

sz
i +

n−1∑

j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1
j

∂
∂k2

j

− k2
j

∂
∂k1

j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angular momentum

due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator −i
(
k1 ∂

∂k2 − k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2

electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

Gluon orbital angular momentum defined in physical lc gauge

Orbital Angular Momentum is a property of LFWFS

LC gauge

Nonzero Anomalous Moment  -->  
Nonzero  quark orbital angular momentum!
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Calculation of proton form factor in Instant Form 

• Need to boost proton wavefunction: p to p+q. Extremely 
complicated dynamical problem; particle number changes

• Need to couple to all currents arising from vacuum!! 
Remain even after normal-ordering

• Instant-form WFs insufficient to calculate form factors

• Each time-ordered contribution is frame-dependent

• Divide by disconnected vacuum diagrams

< p + q|Jµ(0)|p >

p + qp p + qp
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Light-Front  vs. Instant Form
• Light-Front  Wavefunctions are frame-independent

• Boosting an instant-form wavefunctions dynamical  
problem -- extremely complicated even in QED

• Need to couple to all currents arising from vacuum 
(Remain even after normal-ordering)

• Vacuum state is lowest energy eigenstate of Hamiltonian

• Light-Front Vacuum same as vacuum of free 
Hamiltonian

• Zero anomalous gravitomagnetic moment

• Instant-Form Vacuum infinitely complex even in QED

• n! time-ordered diagrams in Instant Form

• Causal commutators using LF time; cluster 
decomposition



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

39Sivers, T-odd from lensing



 

QCD and the LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude
ERBL Evolution

Heavy Quark Fock States
Intrinsic Charm

Gluonic properties
DGLAP

Quark & Flavor Struct

Coordinate space 
representation

Quark & Flavor Structure

Baryon Excitations

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Initial and Final State 
Rescattering

DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Nuclear Modifications
Baryon Anomaly

Color Transparency

Hard Exclusive Amplitudes
Form Factors

Counting Rules

�p(x1, x2, Q
2)

AdS/QCD
Light-Front Holography

LF Schrodinger Eqn.

LF Overlap, incl ERBL

J=0 Fixed Pole

Orbital Angular Momentum
Spin, Chiral Properties

Crewther Relation

40

Burkardt, Schmidt, sjb

Weak DecaysHadronization at 
Amplitude Level
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001

41

DVCS/GPD

 Bakker & JI
Lorce
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• LF wavefunctions play the role of Schrödinger 
wavefunctions in Atomic Physics

• LFWFs=Hadron Eigensolutions: Direct Connection to QCD 
Lagrangian

• Relativistic, frame-independent: no boosts, no disc 
contraction, Melosh built into LF spinors 

• Hadronic observables computed from LFWFs: Form factors, 
Structure Functions, Distribution  Amplitudes, GPDs, TMDs, 
Weak Decays, .... modulo `lensing’ from ISIs, FSIs

• Cannot compute current matrix elements using instant or 
point form from eigensolutions alone -- need to include 
vacuum currents!

•Hadron Physics without LFWFs is like 
Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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•Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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c

c̄

Fixed LF time

Higher Fock States of the Proton



 

|p,Sz >= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi >|p,Sz >= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i
,λi >

|p,Sz >= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i
,λi >

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy

and momentum Pµ.

The light-cone momentum fraction

xi =
k+

i

p+ =
k0

i + kz
i

P0 +Pz

are boost invariant.

n

∑
i

k+
i = P+,

n

∑
i

xi = 1,
n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL Pomeron
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E866/NuSea (Drell-Yan)

s(x) �= s̄(x)

Intrinsic glue, sea, 
heavy quarks

d̄(x) �= ū(x)



 

x

x
(s

+
s−

)

BHPS (µ=0.5 GeV)

BHPS (µ=0.3 GeV)

HERMES

0

0.1

0.2

0.3

10
-1

Figure 2: Comparison of the HERMES x(s(x) + s̄(x)) data with the
calculations based on the BHPS model. The solid and dashed curves
are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.

their measurement of charged kaon production in SIDIS re-
action [6]. The HERMES data, shown in Fig. 2, exhibits
an intriguing feature. A rapid fall-off of the strange sea
is observed as x increases up to x ∼ 0.1, above which the
data become relatively independent of x. The data suggest
the presence of two different components of the strange
sea, one of which dominates at small x (x < 0.1) and the
other at larger x (x > 0.1). This feature is consistent
with the expectation that the strange-quark sea consists
of both the intrinsic and the extrinsic components hav-
ing dominant contributions at large and small x regions,
respectively. In Fig. 2 we compare the data with calcula-
tions using the BHPS model with ms = 0.5 GeV/c2. The
solid and dashed curves are results of the BHPS model
calculations evolved to Q2 = 2.5 GeV2 using µ = 0.5 GeV
and µ = 0.3 GeV, respectively. The normalizations are
obtained by fitting only data with x > 0.1 (solid circles in
Fig. 2), following the assumption that the extrinsic sea has
negligible contribution relative to the intrinsic sea in the
valence region. Figure 2 shows that the fits to the data are
quite adequate, allowing the extraction of the probability
of the |uudss̄〉 state as

Pss̄
5 = 0.024 (µ = 0.5 GeV);

Pss̄
5 = 0.029 (µ = 0.3 GeV). (4)

We consider next the quantity ū(x) + d̄(x) − s(x) −
s̄(x). Combining the HERMES data on x(s(x)+s̄(x)) with

x

x
(d−

+
u−

-s
-s−

)

BHPS (µ=0.5 GeV)

BHPS (µ=0.3 GeV)

HERMES+CTEQ

0

0.1

0.2

0.3

10
-2

10
-1

1

Figure 3: Comparison of the x(d̄(x)+ū(x)−s(x)−s̄(x)) data with the
calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
are from the HERMES experiment [6], and those of x(d̄(x) + ū(x))
are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed
curves are obtained by evolving the BHPS result to Q2 = 2.5 GeV2

using µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalization
of the calculations are adjusted to fit the data.

the x(d̄(x)+ ū(x)) distributions determined by the CTEQ
group (CTEQ6.6) [11], the quantity x(ū(x)+ d̄(x)−s(x)−
s̄(x)) can be obtained and is shown in Fig. 3. This ap-
proach for determining x(ū(x)+ d̄(x)−s(x)− s̄(x)) is iden-
tical to that used by Chen, Cao, and Signal in their recent
study of strange quark sea in the meson-cloud model [12].

An important property of ū + d̄ − s − s̄ is that the
contribution from the extrinsic sea vanishes, just like the
case for d̄− ū. Therefore, this quantity is only sensitive to
the intrinsic sea and can be compared with the calculation
of the intrinsic sea in the BHPS model. We have

ū(x) + d̄(x) − s(x)− s̄(x) =

P uū(xū) + P dd̄(xd̄)− 2P ss̄(xs̄). (5)

We can now compare the x(ū(x) + d̄(x) − s(x) − s̄(x))
data with the calculation using the BHPS model. Since
ū+ d̄−s− s̄ is a flavor non-singlet quantity, we can readily
evolve the BHPS prediction to Q2 = 2.5 GeV2 using µ =
0.5 GeV and the result is shown as the solid curve in Fig. 3.
It is interesting to note that a better fit to the data can
again be obtained with µ = 0.3 GeV, shown as the dashed
curve in Fig. 3.

From the comparison between the data and the BHPS
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Figure 2: Comparison of the HERMES x(s(x) + s̄(x)) data with the
calculations based on the BHPS model. The solid and dashed curves
are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.

their measurement of charged kaon production in SIDIS re-
action [6]. The HERMES data, shown in Fig. 2, exhibits
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tions using the BHPS model with ms = 0.5 GeV/c2. The
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calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
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are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed
curves are obtained by evolving the BHPS result to Q2 = 2.5 GeV2

using µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalization
of the calculations are adjusted to fit the data.
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ū+ d̄−s− s̄ is a flavor non-singlet quantity, we can readily
evolve the BHPS prediction to Q2 = 2.5 GeV2 using µ =
0.5 GeV and the result is shown as the solid curve in Fig. 3.
It is interesting to note that a better fit to the data can
again be obtained with µ = 0.3 GeV, shown as the dashed
curve in Fig. 3.

From the comparison between the data and the BHPS
calculations shown in Figs. 1-3, we can determine the prob-
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tions as follows:

Puū
5 = 0.122; Pdd̄

5 = 0.240; Pss̄
5 = 0.024

(µ = 0.5 GeV) (6)

or

Puū
5 = 0.162; Pdd̄

5 = 0.280; Pss̄
5 = 0.029

(µ = 0.3 GeV) (7)

depending on the value of the initial scale µ. It is re-
markable that the d̄(x) − ū(x), the s(x) + s̄(x), and the
d̄(x) + ū(x) − s(x)− s̄(x) data not only allow us to check
the predicted x-dependence of the five-quark Fock states,
but also provide a determination of the probabilities for
these states.

Equations 6 shows that the combined probability for
proton to be in the |uudQQ̄〉 states is around 40%. It is
worth noting that an earlier analysis of the d̄−ū data in the
meson cloud model concluded that proton has ∼60% prob-
ability to be in the three-quark bare-nucleon state [13], in
qualitative agreement with the finding of this study. A sig-
nificant feature of the present work is the extraction of the
|uudss̄〉 component, which would be related to the kaon-
hyperon states in the meson cloud model. It is also worth
mentioning that in the BHPS model the |uudQQ̄〉 states
have the same contribution to the proton’s magnetic mo-
ment as the |uud〉 three-quark state, since Q and Q̄ in the
|uudQQ̄〉 states have no net magnetic moment. Therefore,
the good description of the nucleon’s magnetic moment
by the constituent quark model is preserved even with the
inclusion of a sizable five-quark components in the BHPS
model.

We note that the probability for the |uudss̄〉 state is
smaller than those of the |uuduū〉 and the |uuddd̄〉 states.
This is consistent with the expectation that the probability
for the |uudQQ̄〉 five-quark state is roughly proportional
to 1/m2

Q [1, 4]. One can then estimate that the probability
for the intrinsic charm from the |uudcc̄〉 Fock state, Pcc̄

5 to
be roughly 0.01. This is also consistent with an estimate
based on the bag model [14], as well as with an analysis
of the EMC charm-production data [15]. Figure 4 shows
the x distribution of intrinsic c̄ calculated with the BHPS
model using 1.5 GeV/c2 for the mass of the charm quark.
Also shown in Fig. 4 is the calculation which evolve the
BHPS calculation from the initial scale, µ = 0.5 GeV, to
Q2 = 75 GeV2, the largest Q2 scale reached by EMC [16].
It is interesting to note that the intrinsic charm contents
at the large x (x > 0.3) region are drastically reduced
when Q2 evolution is taken into account. Figure 4 suggests
that the most promising region to search for evidence of
intrinsic charm could be at the somewhat lower x region
(0.1 < x < 0.4), rather than the largest x region explored
by previous experiments. It is worth noting that we adopt
the simple assumption that the initial scale is the same for
all five-quark states. It is conceivable that the initial scale
for intrinsic charm is significantly higher due to the larger
mass of the charmed quark. The dashed curve shows the x

x
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Figure 4: Calculations of the c̄(x) distributions based on the BHPS
model. The solid curve corresponds to the calculation using Eq. 1
and the dashed and dotted curves are obtained by evolving the BHPS
result to Q2 = 75 GeV2 using µ = 3.0 GeV, and µ = 0.5 GeV,
respectively. The normalization is set at Pcc̄

5
= 0.01.

distribution of intrinsic c̄ at Q2 = 75 GeV2 when the initial
scale is set at µ = 3 GeV, corresponding to the threshold
of producing a pair of charmed quarks. As expected, the
shape of the intrinsic c̄ x distribution becomes similar to
that of the BHPS model.

In conclusion, we have generalized the existing BHPS
model to the light-quark sector and compared the calcu-
lation with the d̄− ū, s+ s̄, and ū + d̄ − s− s̄ data. The
qualitative agreement between the data and the calcula-
tions provides strong support for the existence of the in-
trinsic u, d and s quark sea and the adequacy of the BHPS
model. This analysis also led to the determination of the
probabilities for the five-quark Fock states for the proton
involving light quarks only. This result could guide future
experimental searches for the intrinsic c quark sea or even
the intrinsic b quark sea [17], which could be relevant for
the production of Higgs boson at LHC energies [18].
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Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 
The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 

quires a charm source beyond leading twist [ 13,161. 

The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 
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Abstract 

Double J/e production has been observed by the NA3 collaboration in n-N and pN collisions with a cross section of 

the order of 20-30 pb. The +@ pairs measured in v- nucleus interactions at 150 and 280 GeV/c are observed to carry an 

anomalously large fraction of the projectile momentum in the laboratory frame, x~ > 0.6 at 150 GeV/c and > 0.4 at 280 

GeV/c. We postulate that these forward +@ pairs are created by the materialization of Fock states in the projectile containing 

two pairs of intrinsic CC quarks. We calculate the overlap of the charmonium states with the 1ii&ET) Fock state as described 

by the intrinsic charm model and find that the T-N -+ $9 longitudinal momentum and invariant mass distributions are both 

well reproduced. We also discuss double J/t,b production in pN interactions and the implications for other heavy quarkonium 

production channels in QCD. 

1. Introduction 

It is quite rare for two charmonium states to be pro- 

duced in the same hadronic collision. However, the 

NA3 collaboration has measured a double .I/$ pro- 

duction rate significantly above background in multi- 

muon events with T- beams at laboratory momentum 

150 and 280 GeV/c [ 11 and a 400 GeV/c proton beam 

[ 21. The integrated T-N ---) ++X production cross 

section, a+*, is 18 f 8 pb at 150 GeV/c and 30 f 10 

pb at 280 GeV/c, and the pN -t I&X cross section is 

*This work was supported in part by the Director, Office of 

Energy Research, Division of Nuclear Physics of the Office of 

High Energy and Nuclear Physics of the U.S. Department of 

Energy under Contract Numbers DE-ACO3-76SFOO98 and DE- 

ACO3-76SFUO515. 

27 f 10 pb. The relative double to single rate, a++ /a~, , 
is (3 f 1) x 10e4 for pion-induced production where 

a+ is the integrated single $ production cross section. 

A particularly surprising feature of the NA3 

T-N + t&X events is that the laboratory fraction 

of the projectile momentum carried by the #+ pair 

is always very large, x++ 2 0.6 at 150 GeV/c and 

xW 2 0.4 at 280 GeV/c. In some events, nearly 

all of the projectile momentum is carried by the I@++ 

system. In contrast, perturbative gg and 44 fusion 

processes are expected to produce central $$ pairs, 

centered around the mean value, (x~) = 0.4-0.5, in 

the laboratory [ 3-61. 

The average invariant mass of the pair, (M+e) = 7.4 

GeV, is well above the 2~9 threshold. In fact, all the 

events have MM > 6.7 GeV. The average transverse 
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JLab 12 GeV: An Exotic Charm Factory!

• Charm quarks at high x -- allows charm states 
to be produced with minimal energy

• Charm produced at  low velocities in the target 
-- the target rapidity domain 

• Charm at threshold -- maximal domain for 
producing exotic states containing charm quarks

• Attractive QCD Van der Waals interaction -- 
“nuclear-bound quarkonium”                         
Miller, sjb; de Teramond,sjb

• Dramatic Spin Correlations in the threshold 
Domain   

• Strong SSS Threshold Enhancement

xF ⇠ �1

�L vs. �T , ANN
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|uudc  c > Fluctuation in Proton

QCD: Probability
⇠Λ2

QCD

M2
Q

|e+e�`+`� > Fluctuation in Positronium

QED: Probability
⇠(meα)4

M4
`

Distribution peaks at equal rapidity (velocity)

Therefore heavy particles carry the largest mo-

mentum fractions

c  c in Color Octet

High x strange and charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb
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< xF >= 0.33

Minimize LF energy denominator

x̂i = m�i�n
j m�j

m�i =
⇥

m2
i + k2

�i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

� = t + z/c

< p|G
3
µ⇧

m2
Q

|p > vs. < p|F
4
µ⇧

m4
⌘

|p >

+⇤4⇥2

d⌥
dxF

(pp ⇥ HX)[fb]

fb

⌃q ⇥ ��q

Heavy Quarks at Threshold

Action Principle: Minimum KE, maximal potential 



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

Leading Hadron Production 
from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks

Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

55



 

p p

Probability (QED) � 1
M4

�
Probability (QCD) � 1

M2
Q

Proton Self Energy from gluon-gluon  scattering  
QCD predicts Intrinsic Heavy Quarks!

Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov, et al.

 

xQ � (m2
Q + k2

�)1/2

Q

Q

(g � 2)µ /
↵3

⇡3
log

m2
µ

m2
e

#om light-by-light scattering56
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Ratio insensitive 
to gluon PDF, 

scales

�⇥(p̄p� �cX)
�⇥(p̄p� �bX)

Signal for 
significant IC 

at x > 0.1 ?

Measurement of !þ bþ X and !þ cþ X Production Cross Sections
in p !p Collisions at

ffiffiffi
s

p ¼ 1:96 TeV
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• EMC data: c(x, Q2) > 30�DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp⇤ J/�X

• High xF pp⇤ J/�J/�X

• High xF pp⇤ �cX

• High xF pp⇤ �bX

• High xF pp⇤ ⇥(ccd)X (SELEX)
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Critical Measurements at threshold for JLab, PANDA
Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to B decays; Quarkonium decays

Gardner, Karliner, sjb

 C.H. Chang,  J.P. Ma,  C.F. Qiao and  X.G.Wu,
 



 
Barger, Halzen, Keung

Evidence for charm at large x
59

intrinsic charm
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Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 
The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 
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Abstract 

Double J/e production has been observed by the NA3 collaboration in n-N and pN collisions with a cross section of 

the order of 20-30 pb. The +@ pairs measured in v- nucleus interactions at 150 and 280 GeV/c are observed to carry an 

anomalously large fraction of the projectile momentum in the laboratory frame, x~ > 0.6 at 150 GeV/c and > 0.4 at 280 

GeV/c. We postulate that these forward +@ pairs are created by the materialization of Fock states in the projectile containing 

two pairs of intrinsic CC quarks. We calculate the overlap of the charmonium states with the 1ii&ET) Fock state as described 

by the intrinsic charm model and find that the T-N -+ $9 longitudinal momentum and invariant mass distributions are both 

well reproduced. We also discuss double J/t,b production in pN interactions and the implications for other heavy quarkonium 

production channels in QCD. 

1. Introduction 

It is quite rare for two charmonium states to be pro- 

duced in the same hadronic collision. However, the 

NA3 collaboration has measured a double .I/$ pro- 

duction rate significantly above background in multi- 

muon events with T- beams at laboratory momentum 

150 and 280 GeV/c [ 11 and a 400 GeV/c proton beam 

[ 21. The integrated T-N ---) ++X production cross 

section, a+*, is 18 f 8 pb at 150 GeV/c and 30 f 10 

pb at 280 GeV/c, and the pN -t I&X cross section is 

*This work was supported in part by the Director, Office of 

Energy Research, Division of Nuclear Physics of the Office of 

High Energy and Nuclear Physics of the U.S. Department of 

Energy under Contract Numbers DE-ACO3-76SFOO98 and DE- 

ACO3-76SFUO515. 

27 f 10 pb. The relative double to single rate, a++ /a~, , 
is (3 f 1) x 10e4 for pion-induced production where 

a+ is the integrated single $ production cross section. 

A particularly surprising feature of the NA3 

T-N + t&X events is that the laboratory fraction 

of the projectile momentum carried by the #+ pair 

is always very large, x++ 2 0.6 at 150 GeV/c and 

xW 2 0.4 at 280 GeV/c. In some events, nearly 

all of the projectile momentum is carried by the I@++ 

system. In contrast, perturbative gg and 44 fusion 

processes are expected to produce central $$ pairs, 

centered around the mean value, (x~) = 0.4-0.5, in 

the laboratory [ 3-61. 

The average invariant mass of the pair, (M+e) = 7.4 

GeV, is well above the 2~9 threshold. In fact, all the 

events have MM > 6.7 GeV. The average transverse 
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NA3 Data

πA! J/ψJ/ψX

µ2
R = CQ2

⌅(Q2) = C0 + C1�s(µR) + C2�2
s(µR) + · · ·

⇧ = 1
2x�P+

⇥p⌅ µ+µ�p

Oberwölz

All events have xF
⌃⌃ > 0.4 !

⇧(pp⌅ cX) ⇤ 1µb

60

Excludes color drag model
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• Rigorous prediction of QCD, OPE

• Color-Octet Color-Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production at 
high xF (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)

• Severely underestimated in conventional parameterizations of heavy 
quark distributions (Pumplin, Tung)

• Many empirical tests  (Gardener, Karliner, ..),  including B-decays
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Hoyer, Peterson, Sakai, sjb

Intrinsic Heavy-Quark Fock States
M. Polyakov, et. al

Solution to J/ ! ⇢⇡ Puzzle
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Intrinsic Charm Mechanism for 
Exclusive Diffraction Production

xJ/ψ = xc + x  c

Intrinsic c  c pair formed in color octet 8C in pro-

ton wavefunction

Collision produces color-singlet J/ψ through

color exchange

Kopeliovitch, Schmidt, Soffer, sjb

RHIC Experiment

Large Color Dipole

p p! J/ψ p p

Exclusive Diffractive 
High-XF Higgs Production
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1/16/2005 Mike Leitch 12

Nuclear modification of parton level structure & dynamics

Modification of parton momentum 
distributions of nucleons embedded in nuclei
• shadowing – depletion of low-momentum 
partons (gluons)
• coherence & dynamical shadowing 
• gluon saturation – e.g. color glass condensate, 
a specific/fundamental model of gluon 
saturation which gives shadowing in nuclei

800 GeV p-A (FNAL)   !A = !p*A"

PRL 84, 3256 (2000); PRL 72, 2542 (1994)

open charm: no A-dep

at mid-rapidity

= x
1
-x

2

Q = 2 GeV
5 GeV

10 GeV

Gluon shadowing

Gerland, Frankfurt, Strikman,

Stocker & Greiner (hep-ph/9812322)

Nuclear effects on parton “dynamics”
• energy loss of partons as they propagate 
through nuclei
• and (associated?) multiple scattering 
effects (Cronin effect)
• absorption of J/! on nucleons or co-
movers; compared to no-absorption for 
open charm production

Remarkably Strong Nuclear 
Dependence for Fast Charmonium

M. Leitch

 Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) ,  U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. 

 Published in Phys.Lett.B246:217-220,1990

Violation of PQCD Factorization!
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d⇥
dxF

(pA� J/⇤X)

d⇥
dxF

(�A� J/⇤X)

xF

A2/3 component

A1 component

Fits conventional PQCD subprocesses

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Hoyer,%20P.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Hoyer,%20P.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Vanttinen,%20M.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Vanttinen,%20M.%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Helsinki+U.
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Helsinki+U.
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Sukhatme,U.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Sukhatme,U.%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Illinois+U.,+Chicago
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Scattering on front-face nucleon produces color-singlet     paircc̄

u

64

Octet-Octet IC Fock State

Color-Opaque IC Fock state
interacts on nuclear front surface  

d⇤
dxF

(pA ⇤ J/⌅X) = A2/3 � d⇤
dxF

(pN ⇤ J/⌅X)

fb

⇥q ⇤ �⇥q

�⇥

⇥

p

↵

J/�

p

c

c̄

No absorption of 
small color-singlet

g

Kopeliovich, Schmidt, 
Soffer, sjb

A

_



 

pA� J/⇥X

�A� J/⇥X

A2/3 component

Gp
M(q2)

assumes timelike |Gp
M | = |Gp

E|

Fp
2(Q2)

Fp
1(Q2)

pA� J/⇥X

�A� J/⇥X

A2/3 component

Gp
M(q2)

assumes timelike |Gp
M | = |Gp

E|

Fp
2(Q2)

Fp
1(Q2)

pA� J/⇥X

�A� J/⇥X

A2/3 component

Gp
M(q2)

assumes timelike |Gp
M | = |Gp

E|

Fp
2(Q2)

Fp
1(Q2)

Excess beyond  conventional PQCD subprocesses

J. Badier et al, NA3

⌃ = t + z/c

< p|G
3
µ⌅

m2
Q

|p > vs. < p|F
4
µ⌅

m4
✓

|p >

+⇥4�2

d⇧
dxF

(pp� HX)[fb]

d⇧
dxF

(pA� J/⌥X) = A1 d⇧1
dxF

+ A2/3d⇧2/3
dxF

fb
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• IC Explains Anomalous �(xF ) not �(x2)
dependence of pA⇥ J/⌅X

(Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains A2/3 behavior at
high xF (NA3, Fermilab)
(Kopeliovitch, Schmidt, So�er, SJB)

• IC Explains J/⌅ ⇥ ⇤⇥ puzzle
(Karliner, SJB)

• IC leads to new e�ects in B decay
(Gardner, SJB)

Color Opaqueness

Higgs production at xF = 0.8
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P-
Coulomb Phases

--Wilson Line

“Lensing Effect”

69

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 

Violates pQCD 
Factorization!

Sign reversal in DY!

QED: 
Lensing 

involves soft 
scales
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N.C.R. Makins, NNPSS, July 28, 2006
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• First evidence for non-zero 
Sivers function!

• ⇒ presence of non-zero quark

orbital angular momentum!

• Positive for !+... 

Consistent with zero for !"...

• Systematic error bands include 

acceptance and smearing effects, 

and contributions from unpolarized 
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It exists too!
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f�1T must arise from

interference ... but a distribution function

is just a forward scattering amplitude,

how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce

a T-odd effect!

(also need Lz �= 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: Hermes
charge pattern follow quark 
contributions to anomalous 

moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].

W.-D. Nowak / Nuclear Physics A 755 (2005) 325c–328c 327c

Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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Here eq is the charge of the quark species q, f⊥,q
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T ) the Sivers distribution func-
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T ) the Collins fragmentation function, hq
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T ) a twist-2 relative of the

transversity distribution function [7] and Dq
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T ) is the usual unpolarized fragmentation
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The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
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Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; 

• Wilson line effect  --  lc gauge prescription

• Relate to the quark contribution to the target proton                                                
anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale!

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite!

• Alternate: Retarded and Advanced Gauge: Augmented LFWFs

~S ·~p jet⇥~q

~S ·~p jet⇥~qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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 Pasquini, Xiao, Yuan, sjb

 Hwang, Schmidt, sjb
Collins

Mulders, Boer Qiu, Sterman



 

B. Seitz - Dept. of Physics & Astronomy - University of Glasgow

Hot Topics in DIS
• Non-kt integrated quark distribution 

functions (cf. session Spin-4):

• transversity distribution

• Collins function

• Sivers function

• Boer-Mulders function

• Generalised Parton Distributions 
(Spin-6/7 (Diff 7/8

• Measurements of GE and GM (and 
associated discrepancies)

H. E. Jackson, PIC0435

Sivers Function

Boer-Mulders  
Function

T-Odd:
Require ISI or FSI 

Bj Sum Rule

Transversity

Unpolarized 
Distribution
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!

3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos '"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not

satisfied by the experimental data ,13,14-. The Drell-Yan

data show remarkably large values of ( , reaching values of

about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These

large values of ( are not compatible with $+1 as also seen

in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger

and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-

eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .

In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized

approach ,23- involving the chiral-odd partner of the Sivers

effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos ' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos ' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.

We compute the function h1
!(x ,p!

2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model

for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect

function f 1T
! (x ,p!

2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal

asymmetries such as the cos 2' dependence. Since polarized

proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable

at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin ' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.
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I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new

way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process

has been put forward $7,8%. It was shown that the exchange

of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers

effect $1,10%, which was thought to be forbidden by time-

reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the

role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-

ments enter the anomalous magnetic moment of the proton

$7%. The new mechanism for single target-spin asymmetries

in SIDIS necessarily requires noncollinear quarks and glu-

ons, and in the Sivers asymmetry the quarks carry no polar-

ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),

which correlates the spin of the transversely polarized hadron

with the transverse polarization of its quarks.

In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This

chiral-odd partner of the Sivers effect has been discussed in

Refs. $6,11%, and in this paper we will show explicitly how

initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-

firm this and find that these two distribution functions are in

fact equal in this model. Although this property is not ex-

pected to be satisfied in general, nevertheless, one may ex-

pect these functions to be comparable in magnitude, since

both functions can be generated by the same mechanism. We

investigate the consequences of the present model result for

the unpolarized Drell-Yan process. We obtain an expression

for the cos 2# asymmetry in the lepton pair angular distribu-

tion. Here # is the angle between the lepton plane and the

plane of the incident hadrons in the lepton pair center of

mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations

!some of which will be briefly discussed below" have been

put forward, but we will show that a natural explanation can

come from initial-state interactions which are unsuppressed

by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been

measured in pion-nucleon scattering: '"N→(!("X , with

N deuterium or tungsten and a '" beam with energy of 140,

194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.

PACS numbers: 13.85.Qk, 14.20.Dh, 24.85.+p, 13.88.+e

The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
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1 . Constraints on the magnitude of the sea-quark h⊥
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The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

ν

π
-
 + W at 194 GeV/c

π
-
 + W at 252 GeV/c

p + d at 800 GeV/c

FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥
1 (x, k2

T ) = CH
αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c
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Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:
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1 (x, k2

T ) = CH
αT

π
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T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

Huge E�ect in
⇥W � µ+µ�X
Negligible E�ect in
pd� µ+µ�X
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗
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The Netherlands
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective

# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is

nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but

nonzero transverse momentum(. This results in an unsup-

pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like

coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-

culate # I/F
%* and do obtain nonzero values for f 1T

! and h1
! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain

an expression for the cos 2+ asymmetry from Eq. '16( and

perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!L
"#…

As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .

We will first calculate the # matrix to lowest order (#L
%*)

in the quark-scalar diquark model used in Ref. !7". By cal-

culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$ M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed

by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!

3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos '"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not

satisfied by the experimental data ,13,14-. The Drell-Yan

data show remarkably large values of ( , reaching values of

about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These

large values of ( are not compatible with $+1 as also seen

in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger

and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-

eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .

In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized

approach ,23- involving the chiral-odd partner of the Sivers

effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos ' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos ' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.

We compute the function h1
!(x ,p!

2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model

for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect

function f 1T
! (x ,p!

2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal

asymmetries such as the cos 2' dependence. Since polarized

proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable

at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin ' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiation
⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇤(QT )

Q = 8GeV

⌅N ⇥ µ+µ�X NA10

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⌅(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

Violates Lam-Tung relation!
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DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands

E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!

3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos '"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not

satisfied by the experimental data ,13,14-. The Drell-Yan

data show remarkably large values of ( , reaching values of

about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These

large values of ( are not compatible with $+1 as also seen

in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger

and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-

eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .

In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized

approach ,23- involving the chiral-odd partner of the Sivers

effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos ' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos ' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.

We compute the function h1
!(x ,p!

2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model

for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect

function f 1T
! (x ,p!

2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal

asymmetries such as the cos 2' dependence. Since polarized

proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable

at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin ' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same

underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new

way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process

has been put forward $7,8%. It was shown that the exchange

of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers

effect $1,10%, which was thought to be forbidden by time-

reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the

role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-

ments enter the anomalous magnetic moment of the proton

$7%. The new mechanism for single target-spin asymmetries

in SIDIS necessarily requires noncollinear quarks and glu-

ons, and in the Sivers asymmetry the quarks carry no polar-

ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),

which correlates the spin of the transversely polarized hadron

with the transverse polarization of its quarks.

In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This

chiral-odd partner of the Sivers effect has been discussed in

Refs. $6,11%, and in this paper we will show explicitly how

initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-

firm this and find that these two distribution functions are in

fact equal in this model. Although this property is not ex-

pected to be satisfied in general, nevertheless, one may ex-

pect these functions to be comparable in magnitude, since

both functions can be generated by the same mechanism. We

investigate the consequences of the present model result for

the unpolarized Drell-Yan process. We obtain an expression

for the cos 2# asymmetry in the lepton pair angular distribu-

tion. Here # is the angle between the lepton plane and the

plane of the incident hadrons in the lepton pair center of

mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations

!some of which will be briefly discussed below" have been

put forward, but we will show that a natural explanation can

come from initial-state interactions which are unsuppressed

by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been

measured in pion-nucleon scattering: '"N→(!("X , with

N deuterium or tungsten and a '" beam with energy of 140,

194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr

PHYSICAL REVIEW D 67, 054003 !2003"

0556-2821/2003/67!5"/054003!12"/$20.00 ©2003 The American Physical Society67 054003-1

Product of Boer - 
Mulders Functions

P

P

LHC Experiment

76



 

c

c̄

g
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Problem for factorization when both ISI and FSI occur!

g
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Diffractive Deep Inelastic 
Lepton-Proton Scattering

DDIS

Remarkable: target stays intact despite production 
of a massive system X



                       

Diffractive Structure Function F2
D  

de Roeck



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

80

p

Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

81

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-
Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target!



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

83

Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 

Not power suppressed!  Does not factorize in hadron collisions!
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�⇤ �⇤

Leading-Twist Contribution to  DVCS

Interactions occur between the LF times of the two virtual photon!!

A+ = 0 (LC gauge)

p p

p

Cut is Leading-Twist Diffractive DIS 
�⇤p! Xp0

Dynamic: Not in LFWF 
overlap!
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum

�n(xi,⇥k�i, �i)

�n
i=1(xi

⇥R�+⇥b�i) = ⇥R�

xi
⇥R�+⇥b�i

�n
i
⇥b�i = ⇥0�

�n
i xi = 1

2

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao, 
Yuan, sjb

Collins, Qiu

Hwang, 
Schmidt, sjb,



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012Figure 1: Nuclear correction factor R according to Eq. 1

for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio FF e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function FD

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens
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Nuclear Antishadowing not universal !

87

Schmidt, Yang; sjb
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Light-Front Holography and Non-Perturbative QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Goal:   
Use AdS/QCD duality to construct 

a first approximation to QCD
Hadron Spectrum  

Light-Front Wavefunctions,
Running coupling in IR

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

in collaboration with 
Guy de Teramond

88

Central problem  for strongly-coupled gauge theories
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to the Q⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11
90

invariant measure
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2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
�
R2/z2

⇥
�⌅m .

• Action for massive scalar modes on AdSd+1:

S[⇥] =
1
2

⌥
dd+1x

⇧
g 1

2

�
g⌅m⌃⌅⇥⌃m⇥� µ2⇥2

 
,
⇧

g ⇤ (R/z)d+1.

• Equation of motion
1
⇧

g

⌃

⌃x⌅

�⇧
g g⌅m ⌃

⌃xm
⇥
⇥

+ µ2⇥ = 0.

• Factor out dependence along xµ-coordinates , ⇥P (x, z) = e�iP ·x ⇥(z), PµPµ =M2 :
⇤
z2⌃2

z � (d� 1)z ⌃z + z2M2 � (µR)2
⌅
⇥(z) = 0.

• Solution: ⇥(z)⇤ z� as z ⇤ 0,

⇥(x, z) = Cz
d
2 J�� d

2
(zM) , � = 1

2

⇧
d +

⌦
d2 + 4µ2R2

⌃
.

• Normalization

Rd�1
⌥ ⇥�1

QCD

0

dz

zd�1
⇥2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4

�(z) = Czd/2J��d/2(zM)
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ⇤⇥5D{�1 . . . D�m}⇤ (⇥µ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

⇥(x, zo) = 0, given by the zeros of Bessel functions ��,k: M�,k = ��,k�QCD

• Normalizable AdS modes �(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

-4

0

2

4

z

Φ(z)

2-2006
8721A8

Fig: Meson orbital and radial AdS modes for �QCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

z�

�d⇥ np

�� ⇥ ⇥+⇥�

�� ⇥ K+K�

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z�

z0

�d⇥ np

�� ⇥ ⇥+⇥�

�� ⇥ K+K�

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z�

z0 = 1
⇥QCD

�d⇥ np

�� ⇥ ⇥+⇥�

�� ⇥ K+K�

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Match fall-off at small z to conformal twist-dimension 
at short distances

� = 2 + L
twist

S = 0

O2+L
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• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 
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Dual QCD Light-Front Wave Equation z ⌃ �, �P (z)⌃ |⇧(P )�
[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Upon substitution z⇧� and ⌅J(�) ⌅ ��3/2+Je�(z)/2 �J(�) in AdS WE
⇤
�zd�1�2J

e�(z)
�z

�
e�(z)

zd�1�2J
�z

⇥
+

�
µR

z

⇥2
⌅

�J(z) = M2�J(z)

find LFWE (d = 4)
�
� d2

d�2
� 1� 4L2

4�2
+ U(�)

⇥
⌅J(�) = M2⌅J(�)

with

U(�) =
1
2
⌃⇥⇥(z) +

1
4
⌃⇥(z)2 +

2J � 3
2z

⌃⇥(z)

and (µR)2 = �(2� J)2 + L2

• AdS Breitenlohner-Freedman bound (µR)2 ⇤ �4 equivalent to LF QM stability condition L2 ⇤ 0

• Scaling dimension ⇤ of AdS mode �̂J is ⇤ = 2 + L in agreement with twist scaling dimension of a

two parton bound state in QCD and determined by QM stability condition

LC 2011 2011, Dallas, May 23, 2011 Page 10
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• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Teramond, Dosch, sjb
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AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action  
Dilaton-Modified AdS5

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjb
Positive-sign dilatone�(z) = e+2z2

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)
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z
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .

0

2

4

(G
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(a)

0 2 4
8-2007
8694A19

π (140)

b1 (1235)

π2 (1670)

L

(b)

0 2 4

π (140)

π (1300)

π (1800)

n

Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Quark separation 
increases with L

Pion has 
zero mass!
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Bosonic Modes and Meson Spectrum
4�2 for �n = 1
4�2 for �L = 1
2�2 for �S = 1

0
0

6-2010
8796A5

1 2 3 4

2

4

6

M2

L

0-+ 1+- 2-+ 4-+3+-
JPC

n=3

π(1800)
π2(1880)

π2(1670)
π(1300)

π

b(1235)

n=2 n=1 n=0

0
0

9-2009
8796A1

1 2 3 4

2

4

6

M2

L

1-- 2++ 3-- 4++
JPC

n=3

f2(2300)

f2(1950)

a2(1320)

ρ(1700)

ω(1650)

ρ(1450)
ω(1420)

ρ(770)
ω(782)

f2(1270)

ρ3(1690)
ω3(1670)

a4(2040)
f4(2050)

n=2 n=1 n=0

Regge trajectories for the ⇥ (� = 0.6 GeV) and the I =1 ⇤-meson and I =0 ⌅-meson families (� = 0.54 GeV)

KITPC, Beijing, October 19, 2010 Page 2099

Same slope in n and L

S = 0 S = 1

M2 = 42(n + J/2 + L/2)! 42(n + L + S/2)
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enough Q ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

100

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) �(z)

high Q2
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.
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Model
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Timelike Pion Form Factor from AdS/QCD 
          and Light-Front Holography

s(GeV2)
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⇢
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⇢
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Prescription for 
Timelike poles :

1
s�M2 + i

p
s�

log |F⇡(s)|
� = 0.17

M2
⇢n

= 42(1/2 + n)

Frascati data
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14% four-quark
 probability
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Duality with pQCD?  
ERBL evolution
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Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension ⇥ , ⇥⇥ in the SW model

F (Q2) = �(⇥)
�

�
1+ Q2

4�2

⇥

�
�
⇥ + Q2

4�2

⇥ .

• For ⇥ = N , �(N + z) = (N � 1 + z)(N � 2 + z) . . . (1 + z)�(1 + z).

• Form factor expressed as N � 1 product of poles

F (Q2) =
1

1 + Q2

4�2

, N = 2,

F (Q2) =
2�

1 + Q2

4�2

⇥�
2 + Q2

4�2

⇥ , N = 3,

· · ·

F (Q2) =
(N � 1)!�

1 + Q2

4�2

⇥�
2 + Q2

4�2

⇥
· · ·

�
N�1+ Q2

4�2

⇥ , N.

• For large Q2:

F (Q2)⌅ (N � 1)!
⇤
4�2

Q2

⌅(N�1)

.
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e+
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��
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Dressed soft-wall current brings in higher 
Fock states and more vector meson poles
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FIG. 3. Summary of form factor results, pion and kaon as
|Q2|F (|Q2|), and proton as |Q4|GM (|Q2|)/µp, as functions
of |Q2|. The solid points in the pion and proton panels are
from BaBar ISR measurements [12, 18], the open triangles
are from FNAL pp̄ measurements [3], the open circles are
from the CLEO measurements [4], and the solid squares are
from the present measurements. The solid curves illustrate
the arbitrarily normalized variation of αS for π and K, and
α2
S variation for protons. For explanation of the theoretical

curves for |Q2|F (|Q2|) for pions, see text.

TABLE I. Cross sections for e+e− → π+π−, K+K−, and pp̄
for e+e− annihilations at

√
s = 3772 MeV and 4170 MeV, and

the corresponding form factors of pion, kaon, and proton.

π+π−,K+K− Nπ,K σB (pb) 10Fπ,K |Q2|Fπ,K

pp̄ Np σB (pb) 102GM |Q4|GM/µp√
s = 3772 MeV, |Q2| = 14.2 GeV2

π+π− 661(26) 6.36(25)(36) 0.65(1)(2) 0.92(2)(3)
K+K− 1564(40) 3.95(10)(22) 0.54(1)(1) 0.76(1)(2)
pp̄ 213(15) 0.46(3)(3) 0.88(3)(2) 0.64(2)(2)√
s = 4170 MeV, |Q2| = 17.4 GeV2

π+π− 218(12) 2.89(16)(16) 0.48(1)(1) 0.84(2)(2)
K+K− 644(25) 2.23(9)(12) 0.44(1)(1) 0.77(2)(2)
pp̄ 92(10) 0.29(3)(2) 0.76(4)(2) 0.82(4)(2)

Pion Form Factors—Timelike form factors of pions,
measured by e+e− → π+π−, have been reported by
Babar for 0.09 GeV2 ≤ |Q2| ≤ 8.7 GeV2 by the
ISR method [12]. Our earlier measurement [4] at
|Q2| = 13.48 GeV2, with only 26(5) observed counts,
resulted in Fπ(13.48 GeV2) = 0.075(9). The present re-
sults, Fπ(14.2 GeV2) = 0.065(2) and Fπ(17.4 GeV2) =
0.048(1) are based on 661(26) and 218(12) observed
counts, respectively. These are listed in Table I. The
summed differential cross sections are found to fit the ex-
pected sin2 θ distribution, as shown in Figs. 2(j). In Fig. 3
we plot our results together with all previous results, in-
cluding the indirect result for |Q2| = M2(J/ψ) [13]. As
shown in the figure, all these measurements are in excel-
lent agreement with the pQCD prediction of a αS/|Q2|
variation of the form factors at large momentum trans-
fers. Also shown in the figure are two illustrative the-
oretical predictions. The Q2 behavior of the QCD sum
rule prediction [14] disagrees strongly with the data. The
latest AdS/QCD prediction by Brodsky and de Tera-
mond [15] reproduces the data below 5 GeV2, but falls
to 2/3 of the observed values for |Q2| > 5 GeV2. Czyz
et al. [16] have shown that the measured Fπ(|Q2|) at
|Q2| > 5 GeV2 can be parameterized in a VDM approach,
but only by including hypothesized radial ρ3, ρ4, ρ5 res-
onances.

Kaon Form Factors—Early measurements of timelike
form factors of kaons for |Q2| < 4.4 GeV2, as sum-
marized in Ref. [17], are shown in Fig. 3. The results
of our present measurements at |Q2| = 14.2 GeV2 and
17.4 GeV2 are listed in Table I. The summed differential
cross sections are found to fit the expected sin2 θ dis-
tribution, as shown in Fig. 2(k). In Fig. 3, we show
our present results along with the indirect result for
|Q2| = M2(J/ψ) [13], and our previous measurement
at |Q2| = 13.48 GeV2 [4]. As for pions, all results for
|Q2| > 9 GeV2 follow the αS/|Q2| behavior of the form
factors predicted by pQCD. No theoretical predictions
for kaon timelike form factors exist. An empirical fit to
the data has however been made by Czyz et al. [16], but

Timelike Pion Form Factor

CLEO: Seth et al .

|Q2|F⇡(Q2)|

Consistent with log fall-off of pQCD
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Hypernuclei

Replacing an up or a down quark with a strange quark in a nucleon, which is bound in a
nucleus, leads to the formation of a hypernucleus. A new quantum number, strangeness, is
then introduced into the nucleus, adding a third axis to the nuclear chart. Due to experimental
limitations this third dimension has been explored only scarcely in the past.
Single and double �-hypernuclei were discovered 50 and 40 years ago, respectively. However,
only 6 double �-hypernuclei are known up to now, in spite of a considerable experimental
e⇤ort during the last 10 years. Thanks to the use of p beams and the skilful combination
of experimental techniques, a copious production at PANDA is expected, with even higher
numbers than at (planned) dedicated facilities. A new chapter of strange nuclear physics will
be then opened, whose first result will be the determination of the �� strong interaction
strength, definitively not possible with direct scattering experiments.
In particular, PANDA is planning to investigate double hypernuclei via the production of ⇥�-
pairs, one of which is used for the trigger while the other one is stopped inside a nucleus and
converted into a �-pair. The expected event rate of this reaction is about 500/day.

Proton Structure

There are several ways in which PANDA will be able to investigate the structure of the pro-
ton. The most promising topics are timelike Deeply Virtual Compton Scattering (DVCS), the
measurement of timelike form factors and the extraction of the Boer-Mulders function from
Drell-Yan data.

Deeply Virtual Compton Scattering The theoretical framework of Generalized Parton
Distributions (GPDs), which has been developed only a few years ago, has caused a lot of
excitement in the field of nucleon structure. It has recently been shown that exclusive pp
annihilation into two photons at large s and t can also be described in terms of GPDs. Using
the handbag diagram 4), the process is separated into a ‘soft’ part which is parametrised by
GPDs and a ‘hard’ part which describes the annihilation of a quasi-free qq pair into two photons.

Figure 4: Handbag diagrams for Deeply Virtual Compton Scattering (left) and the timelike
version of the process measurable at PANDA.

5

Measure timelike DVCS in p̄p! �⇤� (Panda) and �⇤� ! p̄ (Belle)

�

p̄

�
• Need analytic representation of  spacelike and timelike DVCS! 
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Apply AdS/QCD to Photon-Photon Amplitudes

• Use Scalar Current to compute J=0 C=+ resonance 
structure

• Scalar a0 hadrons and their radial excitations

• Analytic connection to Spacelike DVCS

• J=0 Fixed pole from direct coupling of two photons to the 
quark current

J. Day, G.de Teramond , sjb
in progress
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Photon-to-Hadron Transition Form Factor

H = ⇡0, ⌘, · · ·

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = �

⇤
1 +

Q2

4�2

⌅
U

⇤
Q2

4�2
, 0, �2z2

⌅
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 ⇥ ⇤. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

4�2 e�⇥2z2x/(1�x). (18)

Inserting the pion wave function (5) for twist ⇤ = 2 and the confined EM current (18)

in the amplitude (3) one finds

F⇤�(Q
2) =

Pqq̄

⇥2f⇤

⇧ 1

0

dx

(1 + x)2
xQ2Pqq̄/(8⇤2f2

⇥). (19)

Eq. (19) gives the same value for F⇤�(0) as (14) which was obtained with the free current.

Thus the anomaly result F⇤�(0) = 1/(4⇥2f⇤) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2F⇤�(Q
2) = 8f⇤

⇧ 1

0

dx
1� x

(1 + x)3

�
1� xQ2Pqq̄/(8⇤2f2

⇥)
⇥

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 ⇥ ⇤, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2F⇤�(Q2 ⇥⇤) = 2f⇤. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

Lepage,  sjb

k2 ⇠ 0

q2

Fundamental leading order prediction from pQCD
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Vertex �µ = ie2F�!H0
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(2) Hadronic-helicity conservation in QCD (for

zero quark mass) requires that the sum of the pho-

ton helicities equal the sum of meson helicities for

Thus in contrast with Eq. (6), M++ and

vanish relative to M+ for yy—+mw,

EE, . . . . If just one of the photons couples

through its
~ qq }state, then all the reactions con-

sidered above are forbidden in leading order, leav-

ing only yy~pgpy, pgm. , and so on.

(3) The vector-dominated amplitudes have pinch

singularities, resulting when each constitutent from

one photon is paired with one from the other pho-

ton, and the two pairs scatter independently of one

another. In lowest order this gives an amplitude

which is suppressed by only 1/vs relative to the

leading QCD term. However, radiative correc-

tions, i.e., Sudakov form-factor effects, tend to fur-

ther suppress these pinch contributions by about

1/~s. '

We thus predict that the vector-dominated ampli-

tudes for photon-induced reactions are unimportant

at high energies and wide angles. The possibility

still exists that they may play some role at

moderate energies. However, data' for the closely

related process yp~yp shows no sign of vector

dominance for s )5 GeV, and 0, -~/2.
We emphasize that pinch singularities are

suppressed in yy~MM processes by at least 1/v s

even for amplitudes in which the photon couples

directly. The pinch singularity can only arise if
the quark and antiquark coupling to the photon

are collinear and near mass shell, in which case the

analysis and results are analogous to those for

pp~MM. The pinch contributions are further

suppressed by radiative corrections; a leading-

logarithm analysis results in a correction to the

leading amplitude which is suppressed almost a full

power of s. This power-law suppression of pinch

singularities, which is a special feature of photon-

induced reactions, greatly simplifies the analysis

and interpretation of these hadronic scattering am-

plitudes.

III. MESON-PHOTON TRANSITION

FORM FACTORS

The photon-meson transition form factor

FM&(Q ) can be measured using two-photon events

in which one photon is far off the mass shell (with

q = —Q ). This is just the exclusive limit of the

photon structure function (i.e., e'er) or frag-

mentation function (i.e., ee—
+ye ). Only neutral

pseudoscalar mesons couple, and the y*yM vertex

has the form

where P~ is the meson's momentum and d' the po-

larization vector of the initial (on-shell) photon. A

complete analysis of this form factor for large Q
has been given in Ref. 1. For pions, the final result

is [Q=min(x, l —x}Q]

F~(Q )= I dx 1+0 a„22
' 0(»Q } m'

3Q2 o x(l —x)
"

Q2

where large g(Q} implies a sharply peaked (at

x =—,} distribution and small r)(Q ) gives a broad

distribution. This Ansatz gives a my transition

form factor

Q'F~(Q') =2f
3n

which is clearly quite sensitive to the parameter g
(see Fig. 6}. For very high Q, rl(Q)~1 and thus,

2f
F~~

2
as Q —+Do . (19)

The x dependence of the integrand in Eq. (16}is

identical to that in Eq. (5) for F~(Q ). Conse-

quently all dependence on P can be removed by

comparing the two processes. Iri fact, a measure-

ment of each provides a direct determination of
(Q2)1.

F (Q')
a, (Q')=, » +0(a,'} . (20)

4~ Q'
I F~(Q

Once the 0 (a, ) corrections have been computed,
'

this could be usmi to measure a, and the QCD
scale parameter A for a given renormalization

(16)

Unlike the electromagnetic form factor F (Q2)

[Eq. (5)], this form factor in leading order has no

explicit dependence on a, (Q ). Consequently an

accurate measurement of F r(Q }determines

I dx[P*(x,g)/x(1 —x)]. This can be combined

with the normalizing sum rule [Eq. (4)] to con-

strain the x dependence of P~(x,g). To illustrate

this, consider normalized distribution amplitudes of
the general form

P (x,g)= f. r(2~+2)
(1—x)"x", r) y 0,

3 [I (g+1)]
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• Analytic Representation of  spacelike and timelike 
DVCS! 

• Contains all C=+ Resonances in t channel of DVCS

• Resonances linear in L corresponds to Regge poles

• Signature factor determines phase

• Resonances in n for each L:  analytic partial wave 
amplitude

• J=0 fixed pole from Compton scattering on quarks

118

Regge Representation of AdS/QCD



 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

Resonance Structure of Photon-Photon Amplitudes

• All JPC = 0++ resonances accessible

• Real and Virtual Photons

• Meson pairs and Baryon Pairs

• Heavy Quarkonia

•  Decomposition in partial waves

• Analogous to timelike form factors

• AdS/QCD predicts analytic form: multi-resonance poles 

• Relative phases and couplings

• Analytically continue to DVCS

• Constraints from DHG and Low Energy Theorem (Pauk, Vanderhaeghen)

•

�⇤p! �p, �⇤⇡ ! �⇡

�� ! ⇡+⇡�,⇡0⇡0,K+K�,K0,K0,⇡0⌘,�!,!!,D+D�, pp̄, · · ·
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• Exposed by timelike form factor through 
dressed current.

• Created by confining interaction

• Similar to QCD(1+1) in lcg

Higher Fock States

U(⇣2)

5 Confinement Interaction and Higher Fock States
[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq ⇥ qq, q ⇥ qqq,

qq ⇥ qq and q ⇥ qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P�confinement ⇤ ⇥4
�

dx�d2�x⇥
⇤�+T a⇤

P+

1
(⇧/⇧⇥)4

⇤�+T a⇤

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enough Q ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:

General result from 

AdS/CFT and Conformal Invariance
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Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) �(z)

high Q2



 

Q2 FΠ!Q2"

Q2  GeV2

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

0.6
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Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np
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• Hadronic gravitational form-factor in AdS space

A�(Q2) = R3
⌅

dz

z3
H(Q2, z) |��(z)|2 ,

where H(Q2, z) = 1
2Q2z2K2(zQ)

• Use integral representation for H(Q2, z)

H(Q2, z) = 2
⌅ 1

0
x dxJ0

⇥
zQ

⇧
1� x

x

⇤

• Write the AdS gravitational form-factor as

A�(Q2) = 2R3
⌅ 1

0
x dx

⌅
dz

z3
J0

⇥
zQ

⇧
1� x

x

⇤
|��(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

���⇤̃qq/�(x, �)
���
2

=
R3

2⇥
x(1� x)

|��(�)|2

�4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

125

Light Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

soft wall
confining potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent
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U(⇣) = 4⇣2 + 22(L + S � 1)

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!
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U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)
AdS/QCD:
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Prediction from AdS/CFT: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
sjb
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⇥M(x, Q0) ⇥
�

x(1� x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

q

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

� = 0.375 GeV

massless quarks
Note coupling 

k2
�, x

Connection of Confinement to TMDs

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)
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J. R. Forshaw, 
R. Sandapen

�⇤p! ⇢0p0

�L

�T
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Second Moment of  Pion Distribution Amplitude

< �2 >=
� 1

�1
d� �2⇥(�)

� = 1� 2x

�asympt ⇥ x(1� x)
�AdS/QCD ⇥

�
x(1� x)

Braun et al.

Donnellan et al.

< �2 >�= 1/5 = 0.20

< �2 >�= 1/4 = 0.25

Lattice (I) < �2 >�= 0.28± 0.03

Lattice (II) < �2 >�= 0.269± 0.039
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• In terms of n�1 independent transverse impact coordinates b⇤j , j = 1, 2, . . . , n�1,

M2 =
⌅

n

n�1⇧

j=1

⌃
dxjd

2b⇤j⌅
⇥
n(xi,b⇤i)

⌅

⇤

⇥
�⇧2

b��
+ m2

⇤

xq

⇤
⌅n(xi,b⇤i) + interactions

• Relevant variable conjugate to invariant mass in the limit of zero quark masses

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇤j

���

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• For a two-parton system �2 = x(1� x)b2
⇤

• To first approximation LF dynamics depend only on the invariant variable �, and hadronic properties

are encoded in the hadronic mode ⇤(�) from

⌅(x, �, ⇧) = eiM�X(x)
⇤(�)⌅
2⇥�

factoring angular ⇧, longitudinal X(x) and transverse mode ⇤(�)

KITPC, Beijing, October 19, 2010 Page 16



 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

Use AdS/CFT orthonormal Light Front Wavefunctions
as a basis for diagonalizing the QCD LF Hamiltonian

• Good initial approximation

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations
• Hamiltonian light-front field theory within an AdS/QCD basis. 

J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,                                             

G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, sjb

Pauli, Hornbostel, 
Hiller, Chabysheva, sjb

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Vary%2C%20J%2EP%2E%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Vary%2C%20J%2EP%2E%22
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PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

134Sivers, T-odd from lensing
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Operated by Jefferson Science Associates for the U.S. Department of  
Energy

Thomas Jefferson National Accelerator Facility Page 22

GPDs & Deeply Virtual Exclusive Processes

x

Deeply Virtual Compton Scattering (DVCS)

t

x+! x-!

hard vertices

!– longitudinal 
momentum transfer

x – quark momentum
fraction

–t – Fourier conjugate
to transverse impact 
parameter  

"

- New Insight into Nucleon Structure

At large Q2 : QCD factorization theorem ! hard exclusive process can be 

described by 4 transitions (Generalized Parton Distributions) :

Vector :: H (x, !,t) 
Tensor : E (x, ! ,t)

Axial-Vector : H (x, !, t) 
Pseudoscalar : E (x, ! ,t)

~

~

H(x,!,t), E(x,!,t), . .  “Generalized Parton Distributions”

# $%
&

!'!& J G = (
1

1

)0,,()0,,(
2

1

2

1
xExHxdxJ

qqq

Quark angular momentum (Ji sum rule)

X. Ji, Phy.Rev.Lett.78,610(1997)  

Timelike DVCS:  Mukhurjee,Afanasev, Carlson,sjb



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001

136

DVCS/GPD

 Bakker & JI
Lorce
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112 S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124

Analogous formulae hold in the domain ζ − 1 < x < 0, where the struck parton in the

target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1 → n − 1 off-diagonal term ("n = −2), let us consider the case where

quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving

n−1 spectators. Then xn+1 = ζ −x1 and #k⊥n+1 = #∆⊥ − #k⊥1. The remaining n−1 partons

have total plus-momentum (1−ζ )P+ and transverse momentum − #∆⊥. The current matrix

element now is
∫

dy−

8π
eixP+y−/2

〈
0
∣∣ψ̄(0)γ +ψ(y)

∣∣2;x1P
+, xn+1P

+, #p⊥1, #p⊥n+1,λ1,λn+1

〉∣∣∣
y+=0,y⊥=0

= √
x1xn+1 δ(x − x1)δλ1−λn+1

, (42)

and we thus obtain the formulae for the off-diagonal contributions to H and E in the

domain 0 ! x ! ζ :
√

1 − ζ

1 − ζ
2

H(n+1→n−1)(x, ζ, t) − ζ 2

4
(
1 − ζ

2

)√
1 − ζ

E(n+1→n−1)(x, ζ, t)

=
(√

1 − ζ
)3−n

∑

n,λi

∫ n+1∏

i=1

dxi d2#k⊥i

16π3
16π3δ

(

1 −
n+1∑

j=1

xj

)

δ(2)

(
n+1∑

j=1

#k⊥j

)

× 16π3δ(xn+1 + x1 − ζ )δ(2)
(#k⊥n+1 + #k⊥1 − #∆⊥

)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′
⊥i ,λi

)
ψ

↑
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1

,

(43)

1√
1 − ζ

∆1 − i∆2

2M
E(n+1→n−1)(x, ζ, t)

=
(√

1 − ζ
)3−n

∑

n,λi

∫ n+1∏

i=1

dxi d2#k⊥i

16π3
16π3δ

(

1 −
n+1∑

j=1

xj

)

δ(2)

(
n+1∑

j=1

#k⊥j

)

× 16π3δ(xn+1 + x1 − ζ )δ(2)
(#k⊥n+1 + #k⊥1 − #∆⊥

)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′
⊥i ,λi

)
ψ

↓
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1

,

(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron

wavefunction with

x′
i = xi

1 − ζ
, #k′

⊥i = #k⊥i + xi

1 − ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2
#k′
⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the

partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.

The powers of
√

1 − ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i
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Analogous formulae hold in the domain ζ − 1 < x < 0, where the struck parton in the

target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1 → n − 1 off-diagonal term ("n = −2), let us consider the case where

quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving

n−1 spectators. Then xn+1 = ζ −x1 and #k⊥n+1 = #∆⊥ − #k⊥1. The remaining n−1 partons

have total plus-momentum (1−ζ )P+ and transverse momentum − #∆⊥. The current matrix
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∫
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, (42)

and we thus obtain the formulae for the off-diagonal contributions to H and E in the
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⊥i ,λi

)
ψ
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(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron

wavefunction with

x′
i = xi

1 − ζ
, #k′

⊥i = #k⊥i + xi

1 − ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2
#k′
⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the

partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.

The powers of
√

1 − ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i

112 S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124

Analogous formulae hold in the domain ζ − 1 < x < 0, where the struck parton in the

target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1 → n − 1 off-diagonal term ("n = −2), let us consider the case where

quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving

n−1 spectators. Then xn+1 = ζ −x1 and #k⊥n+1 = #∆⊥ − #k⊥1. The remaining n−1 partons

have total plus-momentum (1−ζ )P+ and transverse momentum − #∆⊥. The current matrix

element now is
∫

dy−

8π
eixP+y−/2

〈
0
∣∣ψ̄(0)γ +ψ(y)

∣∣2;x1P
+, xn+1P

+, #p⊥1, #p⊥n+1,λ1,λn+1

〉∣∣∣
y+=0,y⊥=0

= √
x1xn+1 δ(x − x1)δλ1−λn+1

, (42)

and we thus obtain the formulae for the off-diagonal contributions to H and E in the

domain 0 ! x ! ζ :
√

1 − ζ

1 − ζ
2

H(n+1→n−1)(x, ζ, t) − ζ 2

4
(
1 − ζ

2

)√
1 − ζ

E(n+1→n−1)(x, ζ, t)

=
(√

1 − ζ
)3−n

∑

n,λi

∫ n+1∏

i=1

dxi d2#k⊥i

16π3
16π3δ

(

1 −
n+1∑

j=1

xj

)

δ(2)

(
n+1∑

j=1

#k⊥j

)

× 16π3δ(xn+1 + x1 − ζ )δ(2)
(#k⊥n+1 + #k⊥1 − #∆⊥

)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′
⊥i ,λi

)
ψ

↑
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1

,

(43)

1√
1 − ζ

∆1 − i∆2

2M
E(n+1→n−1)(x, ζ, t)

=
(√

1 − ζ
)3−n

∑

n,λi

∫ n+1∏

i=1

dxi d2#k⊥i

16π3
16π3δ

(

1 −
n+1∑

j=1

xj

)

δ(2)

(
n+1∑

j=1

#k⊥j

)

× 16π3δ(xn+1 + x1 − ζ )δ(2)
(#k⊥n+1 + #k⊥1 − #∆⊥

)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′
⊥i ,λi

)
ψ

↓
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1

,

(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron

wavefunction with

x′
i = xi

1 − ζ
, #k′

⊥i = #k⊥i + xi

1 − ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2
#k′
⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the

partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.

The powers of
√

1 − ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i

Example of LFWF representation of 
GPDs  (n+1 => n-1)

Diehl, Hwang, sjb
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�⇤ �⇤

Leading-Twist Contribution to Real Part of DVCS

p p

Origin of ‘D-Term’
in QCD

T = �2
X

q

e

2
q

xq
~✏ · ~✏0

LF Instantaneous interaction

s-independent 
‘J=0 fixed pole’T / s0FC=+(t = 0)

Damashek, Gilman
Close, Gunion, sjb

Szczepaniak,                   
Llanes Estrada, sjb
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number n = n⌅, and states di�ering by
the presence of an extra qq: n = n⌅ + 2.

pp ⇤ �⇥�

pp ⇤ ⌅+⌅��

pp ⇤ �⇥ ⇤ ⌅+⌅��

9. The J = 0 Fixed pole: One of the most
distinctive features of QCD is the pres-
ence of a J = 0 fixed Regge pole con-
tribution to the Compton amplitude re-
flecting the fact that the two photons

number n = n⌅, and states di�ering by
the presence of an extra qq: n = n⌅ + 2.

pp ⇤ �⇥�

pp ⇤ ⇤+⇤��

pp ⇤ �⇥ ⇤ ⇤+⇤� ⇤ ⇤+⇤��

pp ⇤ pp� ⇤ �⇥� ⇤ ⇤+⇤��

number n = n⌅, and states di�ering by
the presence of an extra qq: n = n⌅ + 2.

pp ⇤ �⇥�

pp ⇤ ⇤+⇤��

pp ⇤ �⇥ ⇤ ⇤+⇤� ⇤ ⇤+⇤��

pp ⇤ pp� ⇤ �⇥� ⇤ ⇤+⇤��
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Hypernuclei

Replacing an up or a down quark with a strange quark in a nucleon, which is bound in a
nucleus, leads to the formation of a hypernucleus. A new quantum number, strangeness, is
then introduced into the nucleus, adding a third axis to the nuclear chart. Due to experimental
limitations this third dimension has been explored only scarcely in the past.
Single and double �-hypernuclei were discovered 50 and 40 years ago, respectively. However,
only 6 double �-hypernuclei are known up to now, in spite of a considerable experimental
e⇤ort during the last 10 years. Thanks to the use of p beams and the skilful combination
of experimental techniques, a copious production at PANDA is expected, with even higher
numbers than at (planned) dedicated facilities. A new chapter of strange nuclear physics will
be then opened, whose first result will be the determination of the �� strong interaction
strength, definitively not possible with direct scattering experiments.
In particular, PANDA is planning to investigate double hypernuclei via the production of ⇥�-
pairs, one of which is used for the trigger while the other one is stopped inside a nucleus and
converted into a �-pair. The expected event rate of this reaction is about 500/day.

Proton Structure

There are several ways in which PANDA will be able to investigate the structure of the pro-
ton. The most promising topics are timelike Deeply Virtual Compton Scattering (DVCS), the
measurement of timelike form factors and the extraction of the Boer-Mulders function from
Drell-Yan data.

Deeply Virtual Compton Scattering The theoretical framework of Generalized Parton
Distributions (GPDs), which has been developed only a few years ago, has caused a lot of
excitement in the field of nucleon structure. It has recently been shown that exclusive pp
annihilation into two photons at large s and t can also be described in terms of GPDs. Using
the handbag diagram 4), the process is separated into a ‘soft’ part which is parametrised by
GPDs and a ‘hard’ part which describes the annihilation of a quasi-free qq pair into two photons.

Figure 4: Handbag diagrams for Deeply Virtual Compton Scattering (left) and the timelike
version of the process measurable at PANDA.

5

• Test DVCS in Timelike Regime

• J=0 Fixed pole: q2 independent

• Analytic Continuation of GPDs 

• Light-Front Wavefunctions

• charge asymmetry from interference
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38

Recent results from BelleRecent results from Belle

Energy dependence Angular dependence
(GPD curve from Kroll/Schäfer)

pp!""

Physics at PANDAPhysics at PANDA
Exploring QCD with AntiprotonsExploring QCD with Antiprotons

Michael Michael DDüürenren

UniversitUniversitäätt GieGießßenen

— GPD2006 Workshop, ECT* Trento, 06-06-06 —

PQCD Conformal Scaling for range of ⇥CM

s5�⇤(�� � p̄p) ⇥ const
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e+

e�

Z

Formation of  Relativistic Anti-Hydrogen

Munger, Schmidt, sjb

Measured at CERN-LEAR and FermiLab 

⇥q ⇥ ��q

��

⇥

p

⇤

⇤̄

q

Coulomb  field

Coalescence of  off-shell co-moving  positron and antiproton

“Hadronization” at the Amplitude Level

Wavefunction maximal at small impact separation and equal rapidity

⌥ = t + z/c

b⇥ � 1
mred�

< p|G
3
µ⌃

m2
Q

|p > vs. < p|F
4
µ⌃

m4
✏

|p >

⇥
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+⌅4⇤2

⇧ = t + z/c

yp̄ ⇥ ye+
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< p|G
3
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m2
Q

|p > vs. < p|F
4
µ⌅

m4
�

|p >

⇥
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs
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Baryon Production
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   
coalesce quarks via LFWFs
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   
coalesce quarks via LFWFs

No gluons
AdS/QCD 
potential
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   coalesce quarks 
via LFWFs

No gluons!
AdS/QCD

color-
confining 
potential
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Dressed EM Current

Justify Handbag of Kroll et al.?
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Off -Shell  T-Matrix

• Quarks and Gluons Off-Shell

• LFPth:  Minimal Time-Ordering Diagrams-Only positive k+

• Jz Conservation at every vertex 

•  Frame-Independent

• Cluster Decomposition

• “History”-Numerator structure universal

• Renormalization- alternate denominators

• LFWF takes Off-shell to On-shell

• Tested in QED: g-2 to three loops
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Roskies, Suaya, sjb

Chueng Ji, sjb



 

Fermionic Modes and Baryon Spectrum
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

• Action for Dirac field in AdSd+1 in presence of dilaton background ⇧(z) [Abidin and Carlson (2009)]

S =
⇧

dd+1⌃ge⌅(z)
�
i⌅eM

A �ADM⌅ + h.c + ⇧(z)⌅⌅� µ⌅⌅
⇥

• Factor out plane waves along 3+1: ⌅P (xµ, z) = e�iP ·x⌅(z)
⌃
i
⇤
z�⌦m�⌦ m + 2�z

⌅
+ µR + ⇥2z

⌥
⌅(x⌦) = 0.

• Solution (⌅ = µR� 1
2 , ⌅ = L + 1)

⌅+(z) ⇤ z
5
2+⇤e��2z2/2L⇤

n(⇥2z2), ⌅�(z) ⇤ z
7
2+⇤e��2z2/2L⇤+1

n (⇥2z2)

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

M2 = 4⇥2(n + L + 1)

• Obtain spin-J mode ⇤µ1···µJ�1/2
, J > 1

2 , with all indices along 3+1 from ⌅ by shifting dimensions

• Large NC : M2 = 4⇥2(NC + n + L� 2) =⌅ M ⇤
⌃

NC ⇥QCD

Escuela de Fı́sica, UCR, December 1, 2010 Page 25

GdT and sjb, PRL 94, 201601 (2005)

positive parity

Yukawa interaction 
in 5 dimensions 
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Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(��(⇤)�M) ⌃(⇤) = 0,

in terms of the matrix-valued operator �

�⇤(⇤) = �i

⇤
d

d⇤
�

⇧ + 1
2

⇤
⇥5 � ⌅2⇤⇥5

⌅
,

and its adjoint �†, with commutation relations

⇧
�⇤(⇤),�†

⇤(⇤)
⌃

=
�

2⇧ + 1
⇤2

� 2⌅2

⇥
⇥5.

• Solutions to the Dirac equation

⌃+(⇤) ⇤ z
1
2+⇤e�⇥2�2/2L⇤

n(⌅2⇤2),

⌃�(⇤) ⇤ z
3
2+⇤e�⇥2�2/2L⇤+1

n (⌅2⇤2).

• Eigenvalues

M2 = 4⌅2(n + ⇧ + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49

⌫ = L + 1

Soft Wall
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13
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Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

1
2 0 1 N 1

2
+
(1440)

1
2 0 2 N 1

2
+
(1710)

3
2 0 0 �

3
2
+
(1232)

3
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2 or 3

2 .

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].
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the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2 for the negative-

parity spin-12 baryons and ν = µR + 1
2 for the positive parity spin-32 baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-12 positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin- 32 negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 12 negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-32 minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2 or 3

2 . It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular

46

positive parity

negative parity

κ = 0.49 GeV κ = 0.51 GeV
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Baryon Spectrum in Soft-Wall Model

• Upon substitution z ! ⇣ and

 

J

(x, z) = e�iP ·xz2 J

(z)u(P ),

find LFWE for d = 4

d

d⇣
 J

+

+

⌫ +

1

2

⇣
 J

+

+ U(⇣) J

+

= M J

�,

� d

d⇣
 J

� +

⌫ +

1

2

⇣
 J

� + U(⇣) J

� = M J

+

,

where U(⇣) =

R

⇣

V (⇣)

• Choose linear potential U = 2⇣

• Eigenfunctions

 J

+

(⇣) ⇠ ⇣
1

2

+⌫e�

2

⇣

2

/2L⌫

n

(2⇣2

),  J

�(⇣) ⇠ ⇣
3

2

+⌫e�

2

⇣

2

/2L⌫+1

n

(2⇣2

)

• Eigenvalues

M2

= 42

(n + ⌫ + 1), ⌫ = L + 1 (⌧ = 3)

• Full J � L degeneracy (different J for same L) for baryons along given trajectory !

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 33



Chiral Features of Soft-Wall 
AdS/QCD Model
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Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >

• Boost Invariant

• Trivial LF vacuum.

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.
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Nucleon Mass: 1/2 from LFKE  
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Glazek and Schaden [Phys. Lett. B 198, 42 (1987)]: (⇥B/⇥M )2 = 5/8 4�2 for �n = 1
4�2 for �L = 1

2�2 for �S = 1

M2

L

Parent and daughter 56 Regge trajectories for the N and � baryon families for � = 0.5 GeV

2009 JLab Users Group Meeting, June 8, 2009 Page 26156

• ∆ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009)

Same multiplicity of states for mesons and baryons!
4�2 for �n = 1
4�2 for �L = 1
2�2 for �S = 1

0

2

4

(a) (b)6

0 1 2 3 4
9-2009
8796A3

M2

L
0 1 2 3 4

L

N(1710)

N(1440)

N(940)

N(1680)

N(2200)

N(1720) Δ(1600)

Δ(1950)

Δ(2420)

Δ(1905)
Δ(1920)
Δ(1910)

Δ(1232)

n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0

Regge trajectories for positive parity N and � baryon families (� = 0.5 GeV)

LC 2011 2011, Dallas, May 23, 2011 Page 14



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

157

6 E. Klempt et al.: �� resonances, quark models, chiral symmetry and AdS/QCD

L+N

M
2
 (GeV

2
)

N=1

N=0

0 1 2 3 4 5 6
0

2

4

6

8

Δ
3/2

+(1232)

Δ
3/2

+(1600)

Δ
1/2

+(1750)

Δ
3/2

−(1700)

Δ
1/2

−(1620)

Δ
5/2

−(1930)

Δ
3/2

−(1940)

Δ
1/2

−(1900)

Δ
7/2

+(1950)

Δ
5/2

+(1905)

Δ
3/2

+(1920)

Δ
1/2

+(1910)

7/2
+

Δ
5/2

+(2200)
3/2

+
1/2

+

Δ
7/2

−(2200)

Δ
5/2

−(2223)

Δ
9/2

−(2400)
7/2

−

Δ
5/2

−(2350)
3/2

−

Δ
11/2

+(2420)

Δ
9/2

+(2300)

Δ
7/2

+(2390)
5/2

+

11/2
+

9/2
+

7/2
+

5/2
+

11/2
−

9/2
−

Δ
13/2

−(2750)
11/2

−
9/2

−
7/2

−

Δ
15/2

+(2950)
13/2

+
11/2

+
9/2

+

Fig. 2. Regge trajectory for �� resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], �(1930)D35 was interpreted as L = 3, S = 1/2
excitation. The new evidence for �(1940)D33 – which
seems to be a natural spin partner of �(1930)D35 – sug-
gests L = 1, S = 3/2, N = 1 quantum numbers for both,
and the two-star �(1900)S31 to be the natural third part-
ner to complete a spin triplet. In the interpretation of
[17], one could of course also argue that �(1900)S31 and
�(1940)D33 have L = 1, S = 1/2, N = 1, and �(1930)D35

and a missing �G37 below 2GeV are L = 3, S = 1/2 ex-
citations.

At high masses, some problems remain. In particular
�(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between
hard-wall AdS/QCD and data in the 1.7 GeV region. Above
1.8GeV, some inconsistencies with the hard wall solution
exist, in particular the existence of �(1940)D33 [20,21]
and the non-observation of a �G37 candidate with mass
between 1.9 and 2GeV are di⌅cult to reconcile with hard-
wall AdS/QCD. But overall, the trend of most established
states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and
baryons was predicted using AdS/QCD in the metric soft-
wall approximation. Relations between ground state masses
and trajectory slopes

M2 = 4⇥2(L + N + 1/2) for mesons
M2 = 4⇥2(L + N + 3/2) for baryons (A)

were derived. Using the slope of the � trajectory, masses
were calculated. They are plotted as a function of L+N in
Fig. 2. The two states indicated by arrows are those found
in [20,21]. While the positive-parity �(1920)P33 has three
stars in the PDG rating, the negative-parity �(1940)D33

had one star only. Both states were not observed in the
latest analysis of Arndt et al. [3] on elastic ⇤N scattering.

The four positive- and negative-parity states between
1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)1; the seven states (4,5) should have 1.92
GeV. The predicted masses for L + N = 3 (6,7) and 4
(8,9) are 2.20 and 2.42GeV, respectively. The trajectory
continues with the calculated masses 2.64 for L + N = 5
and 2.84 GeV for L + N = 6. Experimentally, the highest
mass state is �(2950)K3 15 which requires L = 6. In this
interpretation, �(2750)I3 13 has L = 5, S = 3/2 and N =
1 and should be degenerate in mass with �(2950)K3 15.
Both are expected to have a mass of 2.84 GeV which is not
incompatible with the experimental findings even though
the mass di�erence of 200 MeV between the two states
does not support their expected mass degeneracy.

An early interpretation of strings was proposed by
Nambu [36]. He assumed that the gluon flux between the
two quarks is concentrated in a rotating flux tube or a
rotating string with a homogeneous mass density. Nambu
derived a linear relation between squared mass and or-
bital angular momentum, M2 � L. This mechanical pic-
ture was further developed by Baker and Steinke [37] and
by Baker [38] to a field theoretical approach. For mesons,
the functional dependence (A) was derived.

The relation (A) between �� masses and L and N has
been derived earlier in a phenomenological analysis of the
baryon mass spectrum [35]. For octet and singlet baryons,
one term ascribed to instanton-induced interactions was
required to reproduce the full mass spectrum of all baryon
resonances having known spin and parity.

The striking agreement between the measured baryon
excitation spectrum and the predictions [18,19] based on
AdS/QCD and the success of the phenomenological mass
formula [35] pose new questions. In both cases, the baryon
masses depend on the number of orbital and radial exci-
tations just as mesons. But baryons have an extra degree

1 The �1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fig. 2. Regge trajectory for �� resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], �(1930)D35 was interpreted as L = 3, S = 1/2
excitation. The new evidence for �(1940)D33 – which
seems to be a natural spin partner of �(1930)D35 – sug-
gests L = 1, S = 3/2, N = 1 quantum numbers for both,
and the two-star �(1900)S31 to be the natural third part-
ner to complete a spin triplet. In the interpretation of
[17], one could of course also argue that �(1900)S31 and
�(1940)D33 have L = 1, S = 1/2, N = 1, and �(1930)D35

and a missing �G37 below 2GeV are L = 3, S = 1/2 ex-
citations.

At high masses, some problems remain. In particular
�(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between
hard-wall AdS/QCD and data in the 1.7 GeV region. Above
1.8GeV, some inconsistencies with the hard wall solution
exist, in particular the existence of �(1940)D33 [20,21]
and the non-observation of a �G37 candidate with mass
between 1.9 and 2GeV are di⌅cult to reconcile with hard-
wall AdS/QCD. But overall, the trend of most established
states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and
baryons was predicted using AdS/QCD in the metric soft-
wall approximation. Relations between ground state masses
and trajectory slopes

M2 = 4⇥2(L + N + 1/2) for mesons
M2 = 4⇥2(L + N + 3/2) for baryons (A)

were derived. Using the slope of the � trajectory, masses
were calculated. They are plotted as a function of L+N in
Fig. 2. The two states indicated by arrows are those found
in [20,21]. While the positive-parity �(1920)P33 has three
stars in the PDG rating, the negative-parity �(1940)D33

had one star only. Both states were not observed in the
latest analysis of Arndt et al. [3] on elastic ⇤N scattering.

The four positive- and negative-parity states between
1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)1; the seven states (4,5) should have 1.92
GeV. The predicted masses for L + N = 3 (6,7) and 4
(8,9) are 2.20 and 2.42GeV, respectively. The trajectory
continues with the calculated masses 2.64 for L + N = 5
and 2.84 GeV for L + N = 6. Experimentally, the highest
mass state is �(2950)K3 15 which requires L = 6. In this
interpretation, �(2750)I3 13 has L = 5, S = 3/2 and N =
1 and should be degenerate in mass with �(2950)K3 15.
Both are expected to have a mass of 2.84 GeV which is not
incompatible with the experimental findings even though
the mass di�erence of 200 MeV between the two states
does not support their expected mass degeneracy.

An early interpretation of strings was proposed by
Nambu [36]. He assumed that the gluon flux between the
two quarks is concentrated in a rotating flux tube or a
rotating string with a homogeneous mass density. Nambu
derived a linear relation between squared mass and or-
bital angular momentum, M2 � L. This mechanical pic-
ture was further developed by Baker and Steinke [37] and
by Baker [38] to a field theoretical approach. For mesons,
the functional dependence (A) was derived.

The relation (A) between �� masses and L and N has
been derived earlier in a phenomenological analysis of the
baryon mass spectrum [35]. For octet and singlet baryons,
one term ascribed to instanton-induced interactions was
required to reproduce the full mass spectrum of all baryon
resonances having known spin and parity.

The striking agreement between the measured baryon
excitation spectrum and the predictions [18,19] based on
AdS/QCD and the success of the phenomenological mass
formula [35] pose new questions. In both cases, the baryon
masses depend on the number of orbital and radial exci-
tations just as mesons. But baryons have an extra degree

1 The �1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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G. de Teramond, sjb 

Preliminary
From overlap of L = 1 and L = 0 LFWFs
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Using SU(6) flavor symmetry and normalization to static quantities
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
2

) =

p
2

3

Q

2

M2

⇢⇣
1 +

Q

2

M2

⇢
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Q

2

M2

⇢0

⌘⇣
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Q
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⇢
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Proton transition form factor to the first radial excited state. Data from JLab

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 43

AdS\QCD
Light-Front 
Holography

G. de Teramond, 
sjb
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Pion Transition Form-Factor
[S. J. Brodsky, F.-G. Cao and GdT, arXiv:1005.39XX]

0

• Definition of ⇡ � � TFF from �⇤⇡0 ! � vertex in the amplitude e⇡ ! e�

�

µ

= �ie2F
⇡�

(q2

)✏
µ⌫⇢�

(p
⇡

)

⌫

✏
⇢

(k)q
�

, k2

= 0

• Asymptotic value of pion TFF is determined by first principles in QCD:

Q2F
⇡�

(Q2 !1) = 2f
⇡

[Lepage and Brodsky (1980)]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]
Z

d4x

Z
dz ✏LMNPQA

L

@
M

A
N

@
P

A
Q

⇠ (2⇡)

4�(4)

(p
⇡

+ q � k) F
⇡�

(q2

)✏µ⌫⇢�✏
µ

(q)(p
⇡

)

⌫

✏
⇢

(k)q
�

• Find for A
z

/ �

⇡

(z)/z

F
⇡�

(Q2

) =

1

2⇡

Z 1

0

dz

z
�

⇡

(z)V
�
Q2, z

�

with normalization fixed by asymptotic QCD prediction

• V (Q2, z) bulk-to-boundary propagator of �⇤

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 45

Cao, de Teramond, sjb
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Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

⇤
d4x

⇤
dz ⇥LMNPQAL�MAN�P AQ

⇤ (2⌅)4�(4) (p⇧ + q � k) F⇧�(q2)⇥µ⌅⌃⌥⇥µ(q)(p⇧)⌅⇥⌃(k)q⌥

• Take Az ⇧ �⇧(z)/z, �⇧(z) =
⌃

2Pqq ⇤ z2e�⇥2z2/2, ⌥�⇧|�⇧� = Pqq

• Find
�
⇧(x) =

⌦
3f⇧x(1� x), f⇧ =

⌃
Pqq ⇤/

⌦
2⌅

⇥

Q2F⇧�(Q2) =
4⌦
3

⇤ 1

0
dx

⇧(x)
1� x

⌅
1� e�PqqQ2(1�x)/4⇧2f2

� x
⇧

normalized to the asymptotic DA [Pqq = 1 ⌅ Musatov and Radyushkin (1997)]

• Large Q2 TFF is identical to first principles asymptotic QCD result Q2F⇧�(Q2 ⌅⌃) = 2f⇧

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25

G.P. Lepage, 
sjb
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Photon-to-pion transition form factor

F.-G. Cao, 
G. de Teramond, 

sjb

where � = 1/137. The form factor F⇥�(0) is also well described by the Schwinger, Adler,

Bell and Jackiw anomaly [31] which gives

F SABJ
⇥� (0) =

1

4⇤2f⇥
, (16)

in agreement within a few percent of the observed value obtained from the the decay

⇤0 ⇥ ⇥⇥.

Taking Pqq̄ = 0.5 in (14) one obtains a result in agreement with (16). Thus (13) repre-

sents a description on the pion TFF which encompasses the low-energy non-perturbative

and the high-energy hard domains, but includes only the asymptotic DA of the qq̄ com-

ponent of the pion wave function at all scales. The results from (13) are shown as dotted

curves in Figs. 1 and 2 for Q2F⇥�(Q2) and F⇥�(Q2) respectively. The calculations agree

reasonably well with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) , but disagree with BABAR’s large Q2 data.
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FIG. 1: The ��� ⇥ ⇥0 transition form factor shown as Q2F⇥�(Q2) as a function of Q2 = �q2.

The dotted curve is the asymptotic result predicted by the Chern-Simons form. The dashed

and solid curves include the e�ects of using a confined EM current for twist-two and twist-two

plus twist-four respectively. The data are from [15, 18, 19].

9

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = �

⇤
1 +

Q2

4�2

⌅
U

⇤
Q2

4�2
, 0, �2z2

⌅
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 ⇥ ⇤. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

4�2 e�⇥2z2x/(1�x). (18)

Inserting the pion wave function (5) for twist ⇤ = 2 and the confined EM current (18)

in the amplitude (3) one finds

F⇤�(Q
2) =

Pqq̄

⇥2f⇤

⇧ 1

0

dx

(1 + x)2
xQ2Pqq̄/(8⇤2f2

⇥). (19)

Eq. (19) gives the same value for F⇤�(0) as (14) which was obtained with the free current.

Thus the anomaly result F⇤�(0) = 1/(4⇥2f⇤) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2F⇤�(Q
2) = 8f⇤

⇧ 1

0

dx
1� x

(1 + x)3

�
1� xQ2Pqq̄/(8⇤2f2

⇥)
⇥

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 ⇥ ⇤, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2F⇤�(Q2 ⇥⇤) = 2f⇤. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

Lepage,  sjb

(Chern-Simons)
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5 Confinement Interaction and Higher Fock States
[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq ⇥ qq, q ⇥ qqq,

qq ⇥ qq and q ⇥ qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P�confinement ⇤ ⇥4
�

dx�d2�x⇥
⇤�+T a⇤

P+

1
(⇧/⇧⇥)4

⇤�+T a⇤

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23
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AdS/QCD and Light-Front Holography

• AdS/QCD: Incorporates scale transformations 
characteristic of QCD with a single scale -- RGE

• Light-Front Holography; unique connection of 
AdS5 to Front-Form

• Profound connection between gravity in 5th 
dimension and physical 3+1 space time at fixed LF 
time τ

• Gives unique interpretation of z in AdS to 
physical variable ζ in 3+1 space-time
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield 
dimensions

• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not 
required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent

• Origin of Linear and HO potentials: Stochastic arguments 
(Glazek); General  ‘classical’ potential  for Dirac Equation (Hoyer)

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive 
Processes



 

5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and Conformal 
SO(4,2) symmetries of 3+1 space 

to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD

Conformal behavior at short distances
+ Confinement at large distance

Counting rules for Hard Exclusive 
Scattering

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

172
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Features of Soft-Wall AdS/QCD

• Single-variable frame-independent radial Schrodinger 
equation

• Massless pion (mq =0)

• Regge Trajectories: universal slope in  n and L

• Valid for all integer J & S.   

• Dimensional Counting Rules for Hard Exclusive Processes

• Phenomenology: Space-like and Time-like Form Factors

• LF Holography: LFWFs;  broad distribution amplitude

• No large Nc limit required

• Add quark masses to LF kinetic energy

• Systematically  improvable -- diagonalize HLF on AdS basis
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In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation

Light-Front QCD

Use AdS/QCD  basis functions!
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Future Directions
• BLFQ -- use AdS/QCD basis to diagonalize HLF

• Lippmann-Schwinger -- perturbatively generate higher Fock States and 
systematically approach QCD   Hiller and Chabysheva

• Transverse Lattice

• Hadronization at the Amplitude Level -- Off-Shell T-matrix convoluted 
with AdS/QCD LFWFs

• Hidden Color  C. Ji , Lepage, sjb

• Intrinsic Heavy Quarks from confinement interaction

• BLM/PMC -- Automatic Scale Setting -- pinch scheme

• Direct Processes at the LHC 

• Dynamic vs. Static Structure Functions

• AdS/QCD for DVCS, Hadrons with Heavy Quarks

• LF Vacuum, In-Hadron Condensates, Zero-Modes, and the Cosmological Constant

Binosi, 
Cornwall,

Popavassiliu
Binger 

di Giustino
sjb

Burkardt 
Dalley
Hiller

Vary 
Honkanen

et al.
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations
Vary, Harinandrath, Maris, sjb

Pauli, Hornbostel, Hiller, McCartor, 
sjb
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield dimensions

• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent for spacelike observables

• Origin of Linear and HO potentials: Stochastic arguments (Glazek); General  
‘classical’ potential  for Dirac Equation (Hoyer)

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive Processes

• Use CRF (LF Constituent Rest Frame) to reconstruct 3D Image of Hadrons 
(Glazek, de Teramond, sjb)



• Test QCD to maximum precision

• High precision determination of               at all scales

• Relate observable to observable --no scheme or scale 
ambiguity

• Eliminate renormalization scale ambiguity in a scheme-
independent manner

• Relate renormalization schemes without ambiguity

• Maximize sensitivity to new physics at the colliders 

↵s(Q2)

Goals

Principle of Maximum Conformality



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

Gell-Mann--Low Effective Charge
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This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

This is very important!

This is very important!

This is very important!

This is very important!

+

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · · +

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

All-orders lepton-loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

⇧�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

�(t, t0) = �(t)��(t0)
1��(t0)

t = �Q2 < 0

�(Q2) =

QED Effective Charge
��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

Initial scale  t0  is arbitrary -- Variation gives RGE Equations
Physical renormalization scale  t  not arbitrary! 
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• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.   This 
is the purpose of the running coupling!

• If one chooses a different initial scale, one must sum an infinite number of 
graphs -- but always recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!     

Electron-Electron Scattering in QED

t u



• Renormalization scale “unphysical”:  No optimal physical scale

• Can ignore possibility of multiple physical scales

• Accuracy of PQCD prediction can be judged by taking arbitrary 
guess with an arbitrary range  

• Factorization scale should be taken equal to renormalization scale

Myths concerning scale setting

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

⇤H(x,✏k�, �i)

pH

x,✏k�

Guessing the scale:  Wrong in QED. Scheme dependent!



  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb

Features of BLM Scale Setting

• “Principle of Maximum Conformality”

• All terms associated with nonzero beta function summed into running 
coupling

• Standard procedure in QED

• Resulting series identical to conformal series 

• Renormalon n! growth of PQCD coefficients from beta function 
eliminated!

• Scheme Independent  !!!

• In general, BLM/PMC scales depend on all invariants

• Single Effective PMC scale at NLO

Di Giustino, Wu, sjb
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FIG. 9: The ET distribution of the second jet at LO and NLO, for two dynamical scale choices,

µ = EW
T (left plot) and µ = ĤT (right plot). The histograms and bands have the same meaning

as in previous figures. The NLO distribution for µ = EW
T turns negative beyond ET = 475 GeV.

the NLO cross section: too low a scale at NLO will make the total cross section unphysically

negative.

This diagnostic can be applied bin by bin in distributions. For example, in fig. 9 we show

the ET distribution of the second-most energetic jet of the three, at the LHC. In the left plot

we choose the scale to be the W transverse energy EW
T (defined in eq. (3.3)) used earlier in

the Tevatron analysis. Near an ET of 475 GeV, the NLO prediction for the differential cross

section turns negative! This is a sign of a poor scale choice, which has re-introduced large

enough logarithms of scale ratios to overwhelm the LO terms at that jet ET . Its inadequacy

is also indicated by the large ratio of the LO to NLO distributions at lower ET , and in the

rapid growth of the NLO scale-dependence band with ET . In contrast, the right panel of

fig. 9 shows that ĤT (defined in eq. (2.10)) provides a sensible choice of scale: the NLO

cross section stays positive, and the ratio of the LO and NLO distributions, though not

completely flat, is much more stable.

Why is µ = EW
T such a poor choice of scale for the second jet ET distribution, compared

with µ = ĤT ? (For an independent, but related discussion of this question, see ref. [40].)

Consider the two distinct types of W + 3 jet configurations shown in fig. 10. If configuration

(a) dominated, then as the jet ET increased, EW
T would increase along with it, by conser-

32

Next-to-Leading Order QCD Predictions for W + 3-Jet Distributions at Hadron Colliders

C. F. Berger,  Z. Bern, L. J. Dixon, F. Febres Cordero,  D. Forde,  T. Gleisberg,  H. Ita,  D. A. Kosower,  and D. Maıtre

Black Hat 

µR = µF = EW
T µR = µF = ĤT

Negative rate at NLO!

184
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limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

All  analyses for Quantum Chromodynamics 
must be applicable to Quantum Electrodynamics
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Another Example in QED: Muonic Atoms

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

⇤H(x,✏k�, �i)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

e+e�

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

Z

e+e�

V (q2) = �Z�QED(q2)
q2

�QED = 1
1��(Q2)

⇤H(x,⇣k⇥, ⇥i)

pH

x,⇣k⇥

1� x,�⇣k⇥

V (q2) = �Z�QED(q2)
q2

�QED(q2) =
�QED(0)
1��(q2)

⇤H(x,⇣k⇥, ⇥i)

pH

x,⇣k⇥

1� x,�⇣k⇥

Scale is unique:  Tested to ppm

e+e�

V (q2) = �Z�QED(q2)
q2

�QED(q2) =
�QED(0)
1��(q2)

µ2
R ⇥ q2

⌅H(x,◆k⇤, ⇥i)

pH

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

q

Z
This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+
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O = C(↵s(Q⇤2)) + D(
m2

q

Q2
) + E(

⇤2
QCD

Q2
) + F (

⇤2
QCD

m2
Q

) + G(
m2

q

m2
Q

)

BLM/PMC: Absorb β-terms into running coupling

QCD Observables

Scale-Free 
Conformal Series

Running Coupling
Effects

O = C(↵s(µ
2
0)) + B(� log

Q2

µ2
0

) + D(

m2
q

Q2
) + E(

⇤

2
QCD

Q2
) + F (

⇤

2
QCD

m2
Q

) + G(

m2
q

m2
Q

)

Intrinsic Heavy 
Quarks

Higher Twist from 
Hadron Dynamics

Light by Light 
Loops
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Example of Multiple BLM Scales

 Angular distributions of massive quarks close to threshold.

Hoang, Kuhn, Teubner, sjb

Need QCD coupling at small scales at low 
relative velocity v

F1 + F2 =
⇥
1� 2

↵s(se3/4/4)
⇡

⇤
⇥

⇥
1 +

⇡↵s(sv2)
4v

⇤
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Relation between scales of the
Gell -Mann--Low and  MS schemes

log

µ

2
0

m

2
`

= 6

Z 1

0
x(1� x) log

m

2
` + Q

2
0x(1� x)

m

2
`

log

µ2
0

m2
`

= log

Q2
0

m2
`

� 5/3

µ2
0 = Q2

0 e�5/3 when Q2
0 >> m2

`
D. S. Hwang, sjb

M. Binger

Can use MS scheme in QED; answers are scheme independent
Analytic extension: coupling is complex for timelike argument
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The Renormalization Scale Problem
• No renormalization scale ambiguity in QED 

• Gell Mann-Low QED Coupling defined from physical observable 

• Sums all Vacuum Polarization Contributions

• Recover conformal series

• Renormalization Scale in QED scheme: Identical to Photon Virtuality

• Analytic: Reproduces lepton-pair thresholds -- number of active leptons set

• Examples:  muonic atoms, g-2, Lamb Shift

• Time-like and Space-like QED Coupling related by analyticity

• Uses Dressed Skeleton Expansion

• Results are scheme independent!

• Predictions for physical observables 
cannot be scheme dependent
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 

Relation of observables must be independent of intermediate scheme 

Violated by PMS!

191



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

192



 
 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

193

Principle of Maximum Conformality

Xing-Gang Wu 
Leonardo  di Giustino, SJB

Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity!

Result is independent of 
Renormalization scheme 

and initial scale!

Same as QED Scale Setting

Apply to Evolution kernels, 
hard subprocesses

Eliminates unnecessary 
systematic uncertainty

PMC/BLM

Need to set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...



 

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production 
Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu 
 SJB

tt̄ asymmetry predicted by pQCD NNLO within
1 � of CDF/D0 measurements using PMC/BLM scale setting

Conventional: guess for 
renormalization scale and range

Experimental asymmetry

PMC Prediction
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Relate Observables to Each Other
• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Conformal Template

• Example: Generalized Crewther Relation
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 Eliminate MSbar, 
Find Amazing Simplification
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[1 + �R(s⇥)
⇥ ][1� �g1(q

2)
⇥ ] = 1

⌅
s⇥ ⇤ 0.52Q

[1 + �R(s⇥)
⇥ ][1� �g1(q

2)
⇥ ] = 1

⌅
s⇥ ⇤ 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

Both observables go through new quark thresholds
at commensurate scales!
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limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED

198
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The Renormalization Scale Problem
• No renormalization scale ambiguity in QED 

• Gell Mann-Low QED Coupling defined from physical observable 

• Sums all Vacuum Polarization Contributions

• Recover conformal series

• Renormalization Scale in QED scheme: Identical to Photon Virtuality

• Analytic: Reproduces lepton-pair thresholds

• Examples:  muonic atoms, g-2, Lamb Shift

• Time-like and Space-like QED Coupling related by analyticity

• Uses Dressed Skeleton Expansion

• Results are scheme independent
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⇣: renormalization scale

Derived in current algebra using an effective pion field

How is this modified in QCD for a composite pion?

What is the evidence for a nonzero vacuum quark condensate?
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Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter, LF

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandy⇡� < 0|q̄�5q|⇡ >

m2
⇡ = � (mu + md)

f⇡
< 0|iq̄�5q|⇡ >

m2
⇡ = � (mu + md)

f2
⇡

< 0|q̄q|0 >
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-

ū

⇡� d

+

-⇡� d

+
-

ū

< ⇡|�̄µq�5q|0 >

Lz = +1, Sz = �1

Lz = 0, Sz = 0

Running constituent mass at vertex

-

Couples to

Angular 
Momentum 

Conservation

⇠ f⇡

< ⇡|q̄�5q|0 > ⇠ ⇢⇡

Jz =
nX

i

Sz
i +

n�1X

i

Lz
i

Light-Front Pion Valence Wavefunctions
Sz

ū + Sz
d = +1/2� 1/2 = 0

Sz
ū + Sz

d = �1/2� 1/2 = �1
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�⇡(k;P ) = i�5E⇡(k, P ) + �5� · PF⇡(k;P )
+�5� · kG⇡(k;P )� �5�µ⌫kµP ⌫H⇡(k;P )

⇡��⇡(k;P )
P/2 + k

P/2� k

< 0|q̄�5q|⇡ >< 0|q̄�5�µq|⇡ >Allows both and

General Form  of  Bethe-Salpeter Wavefunction

⇡�
+

⇡�

ū

-

d

-

-
Sz = 0, Lz = 0 Sz = �1, Lz = +1

LFWFs



 

�� = 0.76(expt)

(��)EW � 1056

(��)QCD � 1045

June 10, 2008 12:22 WSPC/Guidelines-MPLA 02770

Modern Physics Letters A
Vol. 23, Nos. 17–20 (2008) 1336–1345
c© World Scientific Publishing Company

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

QCD Problem Solved if Quark and Gluon condensates reside 

within hadrons, not vacuum! 
R. Shrock, sjb arXiv:0905.1151 [hep- th],   Proc. Nat’l. Acad. Sci., (in press); 

``Condensates in Quantum Chromodynamics and the Cosmological Constant.”204



 Stan Brodsky, SLAC Novel QCD PhenomenologyHEPHY,  October 30, 2012

Light-Front vacuum can simulate empty universe

• Independent of observer frame

• Causal

• Lowest invariant mass state M= 0.

• Trivial up to k+=0 zero modes-- already normal-ordering

• Higgs theory consistent with trivial LF vacuum (Srivastava, sjb)

• QCD and AdS/QCD: In hadron condensates (Maris, Tandy Roberts)

• QED vacuum; no loops

• Zero cosmological constant

Shrock, Tandy, Roberts, sjb
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New perspectives on the quark condensate
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson

leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-

invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-

quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant

mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a

property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave

functions.

DOI: 10.1103/PhysRevC.82.022201 PACS number(s): 11.30.Rd, 14.40.Be, 24.85.+p, 11.15.Tk

Nonzero vacuum expectation values of local operators,

i.e., condensates, are introduced as parameters in QCD sum

rules, which are used to estimate essentially nonperturbative

strong-interaction matrix elements. They are also basic to

current algebra analyses. It is widely held that such quark

and gluon condensates have a physical existence, which is

independent of the hadrons that express QCD’s asymptotically

realizable degrees-of-freedom; namely, that these condensates

are not merely mass-dimensioned parameters in a theoretical

truncation scheme, but in fact describe measurable spacetime-

independent configurations of QCD’s elementary degrees-of-

freedom in a hadronless ground state.

We share the view that these condensates are fundamental

dynamically-generated mass-scales in QCD. However, we

shall argue that their measurable impact is entirely expressed

in the properties of QCD’s asymptotically realizable states;

namely hadrons. In taking this position we have assumed

confinement, from which follows quark-hadron duality and

hence that all observable consequences of QCD can, in

principle, be computed using a hadronic basis. Here, the term

“hadron” means any one of the states or resonances in the

complete spectrum of color-singlet bound states generated by

the theory.

We focus herein on 〈0|q̄q|0〉, where |0〉 is viewed as

some hadronless ground state of QCD. This is the vacuum

quark condensate. Its nonzero value is usually held to signal

dynamical chiral symmetry breaking (DCSB), a concept

of critical importance in QCD, whose connection with the

dressed-quark propagator was anticipated [1–5] (see also

references therein). As reviewed elsewhere (most recently,

e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-

generating mechanism, the origin of constituent-quark masses

and intimately connected with confinement. It is also the basis

for the successful application of chiral-effective field theories

(see, e.g., Refs. [9,10] for contemporary perspectives). On the

face of it, this seems far more than can be understood simply

in terms of a nonzero vacuum expectation value 〈0|q̄q|0〉.

The notion that nonzero vacuum condensates exist and

possess a measurable reality has long been recognized as

posing a conundrum for the light-front formulation of QCD.

This formulation follows from Dirac’s front form of relativistic

dynamics [11], and is widely and efficaciously employed

in perturbative and nonperturbative QCD [12,13]. In the

light-front formulation, the ground state is a structureless Fock

space vacuum, in which case it would seem to follow that

DCSB is impossible. In response, it was argued by Casher

and Susskind [14] that, in the light-front framework, DCSB

must be a property of hadron wave functions, not of the

vacuum. This thesis has also been explored in a series of recent

articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-

sate also poses a critical dilemma for gravitational interactions

because it would lead to a cosmological constant some

45 orders of magnitude larger than observation. As noted

elsewhere [15], this conflict is avoided if strong interaction

condensates are properties of rigorously well-defined wave

functions of the hadrons, rather than the hadronless ground

state of QCD.

Given the importance of DCSB and the longstanding

puzzles described above, we will focus our attention on

the vacuum quark condensate. The essential issues become

particularly clear in the context of the Gell-Mann–Oakes–

Renner relation [18,19], which is usually understood as the

statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
〈q̄q〉0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay

constant; m
q
ζ , with q = u, d, is the current-quark mass at a

renormalization scale ζ ; and 〈q̄q〉0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit

given below in Eqs. (8), (9). In arriving at Eq. (1) using

standard methods, one makes truncations; namely, soft-pion

techniques [20] have been used to relate an in-pion matrix

0556-2813/2010/82(2)/022201(5) 022201-1 ©2010 The American Physical Society
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• Chiral symmetry breaking effect in   AdS/QCD 
depends on weighted z2 distribution, not 
constant condensate

• z2 weighting consistent with higher Fock 
states at periphery of hadron wavefunction

• mass shift depends on hadron size, etc.

• AdS/QCD: confined condensate

• Suggests “In-Hadron” Condensates

�M2 = �2mq < ⇤̄⇤ > ⇥
�

dz ⇥2(z)z2

 Shrock, Roberts, Tandy, sjb

Chiral Symmetry Breaking in AdS/QCD 
Erlich et 

al.
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Determinations of  the vacuum Gluon Condensate
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Figure 4: a): MS mass found from experimental moments Mn(Q2
n) for different n and Q2

n

determined by the equation M̄ (1)
n (Q2

n) = 0 for different values of the gluon condensate. The
shaded area shows the experimental error for

〈

αs

π G2
〉

= 0, for nonzero condensates only the
central lines are shown. b): m̄(m̄2) in GeV vs

〈

αs

π G2
〉

in GeV4 determined from n = 10 and
Q2 = 0.98 × 4m̄2. The αs is taken at the scale (41).

other experiments. In particular, as boundary condition in the RG equation (12) we put:

αs(m
2
τ ) = 0.330 ± 0.025 , mτ = 1.777 GeV (40)

found from hadronic τ -decay analysis [19] at the τ -mass in agreement with other data [20].
Another question is the choice of the scale µ2, at which αs should be taken. Since the

higher order perturbative corrections are not known, the moments Mn(Q2) will depend on
this scale. In the massless limit the most natural choice is µ2 = Q2. On the other hand
for massive quarks and Q2 = 0 the scale is usually taken µ2 ∼ m2. So we choose the
interpolation formula:

µ2 = Q2 + m̄2 (41)

At this scale αs is smaller than at µ2 = m̄2 for the price of larger M̄ (2)
n according to (39).

(Notice, that in the Tables in the Appendix as well as in the Fig 2 the ratio M̄ (2)/M̄ (0) is
given at the scale µ2 = m̄2.) Sometimes we will vary the coefficient before m̄2 (41) to test
the dependence of the results on the scale.

The sum rules for low order moments Mn(Q2), n ≤ 3 cannot be used because of large
contribution of high excited states and continuum as well as large α2

s corrections (see the
Tables in Appendix), especially at Q2 = 0. As the Fig 3 demonstrates, at n ≥ 4 the αs

correction to the gluon condensate is large at Q2 = 0. The 〈G3〉 condensate contribution is
also large (see below), which demonstrates, that the operator product expansion is divergent
here. For these reasons we will avoid using the sum rules at small Q2.

As the Fig 2 shows, the first correction to the moments M̄ (1)
n (Q2) vanishes along the

diagonal line, approximately parametrized by the equation Q2/(4m̄2) = n/5−1. The second-
order correction M̄ (2) and the correction to the condensate contribution M̄ (G,1) are also

12

< 0|�s
⇥ G2|0 > [GeV4]

+0.009± 0.007 from charmonium sum rules
+0.006± 0.012 from � decay.

Ioffe, Zyablyuk

Geshkenbein, Ioffe, Zyablyuk

Davier et al.�0.005± 0.003 from � decay.

Consistent with zero 
vacuum condensate
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Effective Confinement potential from soft-wall AdS/QCD gives  Regge 
Spectroscopy plus higher-twist correction to current propagator 

e+e� ! X, ⌧ decay, Q ¯Q phenomenology

�⇤ �⇤

Re+e�(s) = Nc

X

q

e2
q(1 + O4

s2
+ · · · )

q

q̄

mimics dimension-4 gluon condensate                                           in 

light-quark meson spectra

 ' 0.5 GeV

< 0|↵s

⇡
Gµ⌫(0)Gµ⌫(0)|0 >

M2 = 42(n + L + S/2)
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)



Future QCD Facilities
• AFTER-- Fixed Target at the LHC

• LHeC

• NICA

• FAIR-PANDA

• JLAb 12

• EIC

• JPARC

•  Fermilab Fixed Target

• CERN Fixed Target (Compass)
211
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Fixed Target Physics with the 
LHC Beams

• 7 TeV proton beam, nuclear beams

• Full Range of Nuclear and Polarized Targets

• Cosmic Ray simulations!

• Single-Spin Asymmetries, Transversity Studies, AN

• High-xF Dynamics at Forward and Backward Rapidities

• High-xF Nuclear Anomalies

• Production of ccc to bbb baryons

• Quark-Gluon Plasma in Nuclear Rest System--No Ellipse 
in LF

AFTER
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QCD Myths
• Anti-Shadowing is Universal

• ISI and FSI are higher twist effects and universal

• High transverse momentum hadrons arise only from 
jet fragmentation  -- baryon anomaly!

• heavy quarks only from gluon splitting

• renormalization scale cannot be fixed

• QCD condensates are vacuum effects

• Infrared Slavery

• Nuclei are composites of nucleons only

• Real part of DVCS arbitrary



 

QCD Lagrangian

Hadron  Masses and Observables

Lattice Gauge Theory Light-Front Hamiltonian

DLCQ

Goal: Predict Hadron Properties from First Principles!

Effective Field Theory 
Methods

SCET, ChPT, ...

PQCD
Evolution Equations

Counting Rules

AdS/QCD!

Light-Front 
Holography

Bound-State 
Dynamics!

Confinement! 215
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c
c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
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