Symmetrien in der Teilchenphysik

Helmut Neufeld

Fakultät für Physik der Universität Wien

Sommersemester 2019

Raum-Zeit-Koordinaten

Ort:

Erwin-Schrödinger-Hörsaal

Zeit:

Vorlesung:

FR 9:15-10:45 Uhr

Übungen:

FR 11:00-12:30 Uhr

Abmeldung von den Übungen (ohne Benotung):

nur bis DO 21.03.2019, 23:59 Uhr möglich

Ziele

Vorlesung:

Erlernen gruppentheoretischer Methoden und deren Anwendung auf kontinuierliche Raum-Zeit-Symmetrien

Übungen:

Erlernen von gruppentheoretischen Rechenmethoden und deren Anwendung auf kontinuierliche Raum-Zeit-Symmetrien

Inhalte:

- Symmetrien in der klassischen Mechanik (Wiederholung)
 - Prinzip der kleinsten Wirkung
 - Bewegungsgleichungen
 - Symmetrien und Erhaltungsgrößen
 - Noethertheorem
 - Galileigruppe

- Relativistische Feldtheorie
 - Prinzip der kleinsten Wirkung für Felder
 - Euler-Lagrange-Gleichung (Feldgleichung)
 - Erhaltungsgrößen in der relativistischen Feldtheorie
 - Poincarégruppe
 - Energie-Impuls-Tensor, Drehimpuls, ...

- Drehgruppe
 - ► O(3), SO(3)
 - Infinitesimale Drehungen
 - Liealgebra der SO(3)
 - Allgemeine Definition einer Liealgebra
 - Darstellungen der SO(3)
 - Kroneckerprodukt von Darstellungen
 - Reduzible und irreduzible Darstellungen

- ► SO(3) und SU(2)
 - ► Clebsch-Gordan-Zerlegung
 - Lemmata von Schur
 - Liealgebren von Liegruppen
 - ► Unitäre irreduzible Darstellungen von SO(3) und SU(2)
 - Spinoren
 - Zusammenhang zwischen SO(3) und SU(2)
 - Darstellungen auf Räumen von Funktionen
 - Beschreibung von Teilchen mit Spin

Lorentzgruppe

- lacktriangle Liealgebra und Darstellungen von \mathcal{L}_+^{\uparrow}
- lacktriangle Zusammenhang zwischen \mathcal{L}_+^{\uparrow} und $\mathsf{SL}(2,\mathbb{C})$
- Spinoralgebra
- Spinorfelder (Weylfelder)
- Weylgleichung
- Majoranagleichung
- Diracfeld
- Diracgleichung
- Lösungen der freien Diracgleichung
- Zusammenhang zwischen Spinoren und Vierervektoren
- ightharpoonup Zerlegung des Tensorprodukts zweier irreduzibler Darstellungen der $SL(2,\mathbb{C})$

- ► Darstellungstheorie der Poincarégruppe
 - Liealgebra der Poincarégruppe
 - Invariante Operatoren
 - ► Irreduzible unitäre Darstellungen der Poincarégruppe
 - Fockraum
 - Feldquantisierung

Nicht Inhalt dieser Vorlesung:

- ► Innere Symmetrien → Teilchenphysik II
- Themen, die Kenntnisse der Quantenfeldtheorie erfordern (Wardidentitäten, Anomalien, spontane Symmetriebrechung, etc.) → Teilchenphysik II/III
- Mathematisch rigorose Darstellung der Theorie der Liegruppen und Liealgebren → Oskar-Morgenstern-Platz Beachte: Too much rigor leads to rigor mortis!
- Experimentelle Aspekte der Teilchenphysik → SMI, HEPHY

Methode

Vorlesung:

Frontalunterricht

Übungen:

- ▶ Hausaufgaben \rightarrow particle.univie.ac.at \rightarrow Studium \rightarrow Sommersemester 2019 \rightarrow Symmetrien in der Teilchenphysik
- Vorrechnen der gelösten Aufgaben an der Tafel
- Wissenschaftliche Diskussion

Erforderliche Vorkenntnisse

Es handelt sich um eine fortgeschrittene Lehrveranstaltung in theoretischer Physik, welche die souveräne aktive Beherrschung der folgenden mathematischen und physikalischen Werkzeuge erfordert:

► Höhere Mathematik (insbes. Lineare Algebra) im Ausmaß meines Skriptums, das Sie auf der Homepage der Teilchengruppe finden: particle.univie.ac.at → Studium → Dokumente zum Herunterladen → SS2012 → H. Neufeld: Theoretische Physik T2 → Mathematisches Basiswissen für Theoretische Physik T2

Erforderliche Vorkenntnisse (Forts.)

- ► Theoretische Mechanik, insbes. Lagrangeformalismus (z.B. Landau-Lifschitz, Bd. I, Kapitel I u. II)
- ► Theoretische Quantenmechanik, insbes. Drehimpulsalgebra (z.B. Kapitel 6, tw. 7 u. 8 meines QM-Skriptums)
- Theoretische Elektrodynamik, insbes. Grundzüge der speziellen Relativitätstheorie, relativistische Mechanik, manifest kovariante Formulierung der Maxwellschen Theorie im Ausmaß der Kapitel 2 und der Unterkapitel 3.1-3.11 meines T3-Skriptums: particle.univie.ac.at → Studium → Dokumente zum Herunterladen → WS2017 → H. Neufeld: Theoretische Physik T3

Art der Leistungskontrolle

Vorlesung:

Schriftliche Prüfung (90 Minuten)

Übungen:

- ► Anwesenheitspflicht bei allen Übungsterminen (-2)
- ► Eintragen der zu Hause gerechneten Beispiele in die Teilnehmerliste am Beginn jeder Übungsstunde
- Sie können zu jedem von Ihnen gerechneten Beispiel an die Tafel gerufen werden
- Es wird eine vollkommen korrekte Lösung und klare Präsentation erwartet
- Aktive Teilnahme an Diskussionen in den Übungsstunden

Mindestanforderungen (UE)

- ➤ 50% der aufgegebenen Übungsaufgaben müssen gerechnet und angekreuzt werden
- ► Anwesenheit bei allen Übungsterminen (-2)
- ▶ 3 zufriedenstellende Tafelleistungen

Literatur

- ▶ Vorlesungsmanuskript auf der Homepage der Teilchengruppe: particle.univie.ac.at \rightarrow Studium \rightarrow Dokumente zum Herunterladen \rightarrow SS2019 \rightarrow H. Neufeld: Symmetrien in der Teilchenphysik \rightarrow Vorlesungsmanuskript
- R.U. Sexl, H. Urbankte: Relativität, Gruppen, Teilchen