
Exercises “Symmetries in Particle Physics”

1. A particle is moving in an external field. Which components of the momen-
tum ~p and the angular momentum ~L are conserved?

(a) Field of an infinite homogeneous plane.

(b) Field of an infinite homogeneous circular cylinder.

(c) Field of an infinite homogeneous prism.

(d) Field of two points.

(e) Field of an infinite homogeneous half plane.

(f) Field of a homogeneous cone.

(g) Field of a homogeneous annulus.

(h) Field of an infinite homogeneous helix.

2. The Lagrange function

L′ = L+
df
(
q(t), t

)
dt

differs from the Lagrange function L only by a total derivative. Show that
L and L′ lead to the same equations of motion.

3. The action for a particle moving in the potential U(~x) = k/|~x|2 is invariant
under a scaling transformation t′ = λαt, ~x ′ = λβ~x for certain values of α
and β (λ > 0). Determine α and β. By using Noether’s theorem and the
conservation of energy, derive the constant of motion associated with this
scaling transformation. Check the time indepence of the obtained quantity
by using the equations of motion.

4. Derive the field equation following from the action of a real scalar field ϕ(x):

S =

∫
d4x

1

2

(
∂µϕ∂µϕ−m2ϕ2

)
.

5. Derive the field equation following from the action of a complex scalar field
φ(x):

S =

∫
d4x

(
∂µφ∗ ∂µφ−m2φ∗φ

)
.

6. Derive the field equation following from the action of a massive (real) vector
field Aµ(x):

S =

∫
d4x

(
−1

4
FµνF

µν +
m2

2
AµA

µ

)
, Fµν = ∂µAν − ∂νAµ.



7. Derive the inhomogeneous Maxwell’s equations following from the action of
a massless (real) vector field Aµ(x) coupled to an external conserved current
jµ(x) (Heaviside system with c = 1):

S =

∫
d4x

(
−1

4
FµνF

µν − jµAµ
)
, Fµν = ∂µAν − ∂νAµ.

8. Establish the connection between the components of the electromagnetic
field strength tensor Fµν and the components of ~E and ~B.

Remember:

Aµ =
(
φ, ~A

)
,

jµ =
(
ρ,~j
)
,

~E = −~∇φ− ~̇A,
~B = ~∇× ~A.

9. The action

S =

∫
d4x

(
∂µφ∗ ∂µφ−m2φ∗φ− V (φ∗φ)

)
.

of a selfinteracting complex scalar field φ(x) is invariant under a (global)
U(1) gauge transformation

φ(x)→ e−iαφ(x).

Derive the associated Nother current jµ(x). Check the continuity equation
∂µj

µ = 0 by using the equations of motion.

10. The action integral of scalar electrodynamics,

S =

∫
d4x

(
−1

4
FµνF

µν + (Dµφ)∗Dµφ−m2φ∗φ

)
,

with the covariant derivative

Dµφ = (∂µ + iqAµ)φ,

describes a particle with mass m and electromagnetic charge q.

Show the invariance of the Lagrangian under a local gauge transformation

φ(x)→ e−iqα(x)φ(x), Aµ(x)→ Aµ(x) + ∂µα(x).

Hint: Determine the behaviour ofDµφ under the local gauge transformation.



11. Review the following group theoretic concepts:

(a) group axioms,

(b) Abelian group,

(c) subgroup,

(d) invariant subgroup.

12. Recapitulate the definitions of the following groups and verify the group
axioms:

(a) Lorentz group L,

(b) proper Lorentz group L+,

(c) orthochronous Lorentz group L↑,
(d) proper orthochronous Lorentz group L↑+,

(e) orthochorous Lorentz group L0.

13. The Poincaré group P consists of all elements of the form (L, a), with a
translation four-vector a and L ∈ L. The composition law is given by

(L′, a′)(L, a) = (L′L,L′a+ a′).

Explain the physical origin of the composition law and verify the group
properties of P .

14. Show that the set T of pure translations (1, a) forms an Abelian invariant
subgroup of P .

15. Determine the canonical energy-momentum tensor Θµ
ν of ϕ4 theory defined

by the Lagrangian

L =
1

2
∂µϕ∂µϕ−

m2

2
ϕ2 − λ

4!
ϕ4.

Verify ∂µΘµ
ν = 0 by using the equation of motion.

16. Determine the energy-momentum four-vector P µ of ϕ4 theory. What is the
explicit form of the field energy H = P 0 and the field momentum ~P?

17. Determine the canonical energy-momentum tensor of a (free) massive vector
field. Verify ∂µΘµ

ν = 0 by using the equation of motion.



18. Determine the Belinfante-symmetrized energy-momentum tensor of a (free)
massive vector field. Verify ∂µT

µ
ν = 0 by using the equation of motion.

19. Use the result of the previous problem with m = 0 to derive the symmetric
energy-momentum T µν of the electromagneic field. Express its components
in terms of the components of ~E and ~B. Discuss in particular the form
and the physical interpretation of the energy density T 00, the momentum
density T 0i and Maxwell’s stress tensor −T ij.

20. Alternative derivation of the energy density of the electromagnetic field:
Consider the electromagnetic field energy contained in the spatial domain
V ,

Efield
V =

∫
V

d3x
1

2

(
~E2 + ~B2

)
,

in the presence of charged point particles with energies

Ea =
√
m2
a + ~p 2

a , a = 1, . . . .

Assume for simplicity that the particles are confined to the region V and
do not pass its boundary ∂V . Compute

d

dt
Efield
V =

d

dt

∫
V

d3x
1

2

(
~E2 + ~B2

)
by using Maxwell’s equations,

~∇× ~E = −∂
~B

∂t
, ~∇ · ~E = ρ, ~∇× ~B = ~j +

∂ ~E

∂t
, ~∇ · ~B = 0,

to show that the time rate of change of the total energy contained in the
region V (field energy plus energies of the particles) can be expressed in
terms of a surface integral over the boundary of V :

d

dt

(
Efield
V +

∑
a

Ea

)
= −

∫
∂V

d~f · ~S.

21. Discuss the time-derivative of the total momentum contained in V ,

d

dt

(
~P field
V +

∑
a

~pa

)
= . . . ,

in analogy to the previous problem. As your final result you should be able
to derive Maxwell’s stress tensor as the integrand of a surface integral.



22. Determine the electric field between the plates of an infinitely extended
capacitor with homogeneous surface charge densities ±σ (see Fig. 1). Use
Maxwell’s stress tensor to compute the forces acting on the spatial domains
V and V ′.
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Figure 1: Electric field in a capacitor.

23. Two equal charges q are sitting at the points ±a~ez/2 (see Fig. 2). Sketch
the electric field lines between the two charges. Use Maxwell’s stress tensor
to compute the force acting on a half-sphere with radius R → ∞ located
in the lower (upper) half-space with z < 0 (z > 0).
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Figure 2: Forces between two charges.

24. Same as the previous problem but with two opposite charges ±q at the
points ±a~ez/2.



25. The angular momentum of the electromagnetic field contained in a spatial
region V is given by

~J field
V =

∫
V

d3x ~x×
(
~E × ~B

)
.

Compute the time derivative

d

dt

(
~J field
V +

∑
a

~La

)
= . . .

of the total angular momentum contained in V analogously to the approach
employed in problems 20 and 21. In your final result, you should arrive at
a surface integral, which can be interpreted as the torque acting on the
system.

26. Demonstrate the group properties for O(3,R) and SO(3,R).

27. Show that the rotation of a vector ~x in three-dimensional space by the angle
α around the rotation axis ~n (|~n| = 1, right-hand rule) is described by

~x ′ = R (~α) ~x = cosα~x+ (1− cosα)~n (~n · ~x) + sinα~n× ~x, ~α = α~n.

Hint: Decompose the vector ~x in components parallel and orthogonal to the
rotation axis and use the linearity of the transformation R (~α).

What is the matrix representation of R (~α) with respect to the standard
orthonormal basis {~e1, ~e2, ~e3}?

28. Show that a real, orthogonal and unimodular 3 × 3 matrix O can always
be written in the form O = R (~α) for an appropriate choice of the rotation
vector ~α.

Hint: Interpret O as an element of L(C3). What are the implications for the
eigenvalues and eigenvectors of O from the conditions O∗ = O, OTO = 1

and detO = 1? Use the spectral theorem for normal operators to derive
your final result.

29. The generators of SO(3,R) in the defining representation were found to be

(Λk)ij = −εkij. Show that the matrix ~n · ~Λ (|~n| = 1) satisfies the relations(
~n · ~Λ

)2

= ~n~nT − 1,
(
~n · ~Λ

)3

= −~n · ~Λ.

Use them to compute the power series expansion

exp
(
~α · ~Λ

)
=
∞∑
k=0

1

k!

(
~α · ~Λ

)k
and compare your result with R (~α).



30. Show that the vector space R3 with the usual cross product as the multi-
plication is a Lie algebra. Determine its structure constants!

31. The generators t1, t2, t3 in an arbitrary representation of SO(3) satisfy the
commutation relations [ti, tj] = εijktk. A vector operator ~v can be defined
by the property [

~v, ~ε · ~t
]

= ~ε× ~v.
Use these relations to show that[

~v 2, ~ε · ~t
]

= 0.

32. Let (V,D) be a representation of the group G. A vector v ∈ V is called cyclic
if the linear span of {D(g)v|g ∈ G} coincides with the whole vector space
V . Show that a representation is irreducible if and only if every nonzero
vector in V is cyclic.

33. Let g → D(g) be a matrix representation of a group G. Show that

g →
(
D(g)−1

)T
is also a representation (contragredient representation).

34. Let (V,D) and (V ′, D′) be linear representations of some group G. Verifiy
that the Kronecker product (tensor product) (V ⊗ V ′, D ⊗D′) defined by

(D ⊗D′)(g) := D(g)⊗D′(g) ∀ g ∈ G

is indeed a representation.

35. Let g → D(g) be a matrix representation of a group G in a complex vector
space V . Show that g → D(g)∗ is also a representation.

36. Give the definition of SU(2) and demonstrate its group properties.

37. Show that an element of SU(2) can always be written in the form

U(~α) = exp
(
~α · ~t

)
, ~t = −i~σ/2,

with the Pauli matrices ~σ = (σ1, σ2, σ3). What can you say about the range
of the real parameters ~α? Determine the commutator [ti, tj]. What do you
find for the structure constants of SU(2)?

38. Write U(~α) as a linear combination of the unit matrix 12 and the Pauli
matrices. Perform the computation in at least two different ways!

39. Show that ~α → U(~α) and ~α → U(~α)∗ are equivalent representations of
SU(2).



40. We consider the space of tensors Tij of rank 2 in three dimensions. The
projection operator on the subspace of multiples of δij is given by

(P0)ij kl =
1

3
δijδkl.

Show that P0P0 = P0 is indeed fulfilled.

41. In the tensor space of the previous problem, the projection operator on the
subspace of antisymmetric tensors is given by

(PA)ij kl =
1

2
(δikδjl − δilδjk) .

Verify PAPA = PA.

42. Again in the same tensor space, the projection operator on the subspace of
symmetric tensors is given by

(PS)ij kl =
1

2
(δikδjl + δilδjk) .

Verify PSPS = PS and PA + PS = 1⊗ 1.

43. Compute P0PS and PSP0. Use these results to show that PS − P0 is a
projector (on the subspace of tracelesss symmetric tensors). Verify also:

P0PA = PAP0 = 0,

P0(PS − P0) = (PS − P0)P0 = 0,

PA(PS − P0) = (PS − P0)PA = 0,

P0 + PA + (PS − P0) = 1⊗ 1.

44. Express Λm ⊗ Λm in terms of P0, PA and PS, where

(Λm)ik = −εmik.

45. Show that
1

2
Tr
(
σiU(~α)σjU(~α)†

)
= (R(~α))ij ,

where U(~α) ∈ SU(2) was defined in ex. 37 and R(~α) ∈ SO(3) in ex. 27.

46. Show: U ∈ SU(2) can be expressed in terms of R ∈ SO(3) by the relation

U = ±12 +Rijσiσj

2
√

1 + TrR
.



47. The operator adX , acting on the space L(V ) of linear operators on a (finite-
dimensional) vector space V , is defined by

adXY := [X, Y ], X, Y ∈ L(V ).

Be t1, . . . , tn a basis for the generators of some Lie group G in a faithful
representation with commutation relations

[ta, tb] = C c
ab tc.

Determine the commutator
[adta , adtb ].

48. Show that an SU(2) matrix U can always be written in the form

U =

(
a b
−b∗ a∗

)
,

where a, b ∈ C and |a|2 + |b|2 = 1.

49. We consider the two-dimensional representation D(1/2) of SU(2) with the
generators

~S = ~σ/2.

The spinors

χ+ =

(
1
0

)
, χ− =

(
0
1

)
are eigenvectors of S3 and form a basis of the representation space. Deter-
mine S±χ± (in all possible combinations).

50. The totally symmetric part of D(1/2) ⊗ D(1/2) ⊗ D(1/2) corresponds to the
irreducible representation D(3/2). Express the canonical basis

|3/2, 3/2〉 , |3/2, 1/2〉 , |3/2, −1/2〉 , |3/2, −3/2〉
as linear combinations of the totally symmetric three-fold tensor products
of χ±.

Hint: Start with
|3/2, 3/2〉 = χ+ ⊗ χ+ ⊗ χ+

and apply

J− = S− ⊗ 1⊗ 1+ 1⊗ S− ⊗ 1+ 1⊗ 1⊗ S−.

51. Compute Uχ±, using the SU(2) parametrization introduced in ex. 48.

52. Compute

D(3/2)(~α) |3/2, m〉 = U(~α)⊗ U(~α)⊗ U(~α) |3/2, m〉 , m = 3/2, . . . ,−3/2

using the result of the previous problem. Determine the matrix represen-
tation of D(3/2)(~α) (expressed in terms of the parameters a, b) with respect
to the canonical basis and check its unitarity.



53. An infinitesimal Lorentz transformation

t′ = t+ ~u · ~x,
~x ′ = ~x+ ~α× ~x︸ ︷︷ ︸

rotation

+ ~u t︸︷︷︸
boost

can be written as
x′ = L(~α, ~u)x

with
L(~α, ~u) = 1+ ~α · ~M + ~u · ~N.

Show that the generators ~M, ~N assume the form

Mi =

(
0 ~0T

~0 Λi

)
, Ni =

(
0 ~ei

T

~ei 03

)
,

where the 3× 3 matrices Λi were defined in ex. 29 and {~e1, ~e2, ~e3} denotes
the standard orthonormal basis of R3.

54. Verify the commutation relations

[Mi,Mj] = εijkMk, [Ni, Nj] = −εijkMk, [Ni,Mj] = εijkNk.

55. Show that the complex linear combinations

~M± =
1

2

(
~M ± i ~N

)
satisfy the commutation relations[

M±
i ,M

±
j

]
= εijkM

±
k ,

[
M+

i ,M
−
j

]
= 0.

56. Determine the explicit form of the finite boost

L
(
~0, ~v
)

= exp
(
~u · ~N

)
= exp

(
u~n · ~N

)
, |~n| = 1, u ≥ 0.

Find the relation of the velocity ~v with the rapidity vector ~u by comparing
your result with

L
(
~0, ~v
)

=

(
γ γ~v T

γ~v 13 + γ2

1+γ
~v~v T

)
, γ =

1√
1− ~v 2

57. Verify the relation

L
(
~α,~0
)
L
(
~0, ~v
)

= L
(
~0, R(~α)~v

)
L
(
~α,~0
)
.



58. Compute Tr(σ̄µσν), where σµ = (1, ~σ), σ̄µ = (1,−~σ).

59. Compute det(A⊗ 12), where A is a 2× 2 matrix.

Hint: Consider the matrix representation of A⊗12 with respect to the basis
{e1 ⊗ e1, e2 ⊗ e1, e1 ⊗ e2, e2 ⊗ e2}.

60. Show:

exp(−~u · ~σ/2) = cosh
u

2
− ~n · ~σ sinh

u

2
, ~u = u~n, |~n| = 1, u ≥ 0.

61. The formula

Lµν =
1

2
Tr
(
σ̄µAσνA

†)
maps A ∈ SL(2,C) to L = (Lµν) ∈ L

↑
+. Determine L for A = exp(−uσ3/2).

62. Determine L ∈ L↑+ for the general boost A = exp(−~u · ~σ/2)

63. Show that only −A ∈ SL(2,C) effects the same transformation,

X → X ′ = AXA†,

as does A ∈ SL(2,C).

64. The infinitesimal Lorentz transformation discussed in ex. 53 can also be
written in the form

x′µ = xµ + ωµνx
ν .

Discuss the relation between the parameters ωµν = −ωνµ and the rotation
angle ~α and the boost vector ~u.

65. Write the infinitesimal Lorentz transformation L(~α, ~u) defined in ex. 53 in
the form

L(~α, ~u) = 1+
1

2
ωαβΣαβ

and express the generators Σαβ = −Σβα in terms of the elements of the
previously defined matrices Mi and Ni.

66. Determine the commutation relations of the generators Σαβ of L↑+,[
Σαβ,Σγδ

]
= . . .

and show the equivalence of your result with the formulae given in ex. 54.



67. Prove the following relations for the spinors ϕ, χ:

ϕχ = χϕ, ϕ̄χ̄ = χ̄ϕ̄, ϕσµχ̄ = −χ̄σ̄µϕ.

68. Show: ∫
d4x χ̄σ̄µ∂µχ =

∫
d4xχσµ∂µχ̄.

69. Verify the following relations:

(σµσ̄ν + σν σ̄µ) β
α = 2gµνδ β

α ,

(σ̄µσν + σ̄νσµ)α̇β̇ = 2gµνδα̇
β̇
.

70. Compute σµpµ σ̄
νpν and σ̄µpµ σ

νpν using the relations displayed in the pre-
vious problem.

71. The γ-matrices in the Weyl basis are defined by

γµ :=

(
0 σµ

σ̄µ 0

)
.

Discuss the index structure and verify the anticommutation relations

{γµ, γν} = 2gµν14

using the formulae shown in 69.

72. Show:

γ†µ = βγµβ, β =

(
0 12

12 0

)
.

73. In two-component notation, the Dirac equation is given by

iσµ∂µϕ̄ = mχ, iσ̄µ∂µχ = mϕ̄.

Show that χ and ϕ̄ fulfil the Klein Gordon equation,(
2 +m2

)
χ = 0,

(
2 +m2

)
ϕ̄ = 0.

74. Show:

S =

(
e−i(~α−i~u)·~σ

2 0

0 e−i(~α+i~u)·~σ
2

)
= e−

i
4
ωµνσµν

with

σµν =
i

2
[γµ, γν ] .



75. Verify the spinor relations ū(~p, r)u(~p, s) = 2mδrs, v̄(~p, r)v(~p, s) = −2mδrs.

76. Compute: γµγ
µ, γµγ

νγµ, γµγ
νγργµ.

77. Show that Vαα̇ := σµαα̇Vµ ⇒ V µ = 1
2

(σ̄µ)α̇α Vαα̇.

Instructions for problems 78-81: Let (L, a) ∈ P↑+ → U(L, a) be a

faithful representation of P↑+ in a space H. An infinitesimal transformation
(Lµν = δµν + ωµν) is written in the form

U(L, a) ' 1H −
i

2
ωαβJ

αβ + iaµP
µ,

where the factor i is pulled out to obtain hermitean generators Jαβ, P µ in
the case of a unitary representation. Verify the relations given in 78-81.

Hint: Start with

U(L, 0)−1U(L′, a′)U(L, 0) = . . . , U(1, a)−1U(L′, a′)U(1, a) = . . .

for finite (L, a) but infinitesimal (L′, a′).

78. U(L, 0)−1JαβU(L, 0) = LαµL
β
νJ

µν

79. U(L, 0)−1P µU(L, 0) = LµνP
ν

80. U(1, a)−1JαβU(1, a) = Jαβ + aαP β − aβPα

81. U(1, a)−1P µU(1, a) = P µ

82. Verify the Poincaré algebra,

i
[
Jαβ, Jγδ

]
= gαγJβδ − gβγJαδ + gαδJγβ − gβδJγα,

i
[
Jαβ, P γ

]
= gγαP β − gγβPα,

i
[
Pα, P β

]
= 0,

using the results obtained in 78-81 for infinitesimal (L, a).

Compare the first formula with your result obtained for ex. 66!

83. Show that

(L, a)→
(
L a
0 1

)
is a 5× 5 matrix representation of the Poincaré group. Note that this rep-
resentation is reducible, but not decomposable (P↑+ is not semisimple).

84. Derive the commutation relations of the Poincaré algebra using the repre-
sentation shown in the previous problem.



Free scalar quantum field theory: The commutation relations for the
creation and annihilation operators of a quantized hermitean scalar field
φ(x) with mass m are given by[

a(p), a(p′)†
]

= (2π)32p0δ(3)(~p− ~p ′)︸ ︷︷ ︸
δ(p,p′)

, [a(p), a(p′)] = 0,

where p0 =
√
m2 + ~p 2.

The ground state (vacuum state) |0〉 is characterized by a(p)|0〉 = 0 ∀ ~p and
the normalization condition 〈0|0〉 = 1. The one-particle momentum eigen-
state |p〉 is defined by |p〉 = a(p)†|0〉. The general form of a normalizable
one-particle state |ψ(1)〉 is given by

|ψ(1)〉 =

∫
d3p

(2π)32p0︸ ︷︷ ︸
dµ(p)

|p〉ψ(1)(p).

In the case of n particles, one defines |p1, . . . pn〉 = a(p1)† . . . a(pn)†|0〉, being
an eigenstate of the four-momentum operator P µ with eigenvalue pµ1 +. . . pµn.
This n particle state obeys the normalization condition

〈p1, . . . pn|k1, . . . kn〉 =
∑
σ∈Sn

n∏
i=1

δ(pi, kσ(i)).

The Fourier decomposition of the real scalar field is given by

φ(x) =

∫
dµ(p)

[
a(p)e−ipx + a(p)†eipx

]
.

85. A Poincaré transformation (L, a) is represented by a unitary operator
U(L, a) acting on the Fock space of the scalar field theory. Make an ed-
ucated guess how U(L, a) acts on the basis vectors

|0〉, |p〉, |p1, p2〉, . . . .

86. Using your result for U(L, a), verify the composition rule U(L′, a′)U(L, a) =
U(L′L,L′a+ a′) of the Poincaré group.

87. Determine U(L, a)a†(p)U(L, a)−1 and U(L, a)a(p)U(L, a)−1.

88. Determine U(L, a)φ(x)U(L, a)−1.

89. Determine the action of a Poincaré transformation on a general one-particle
state

U(L, a)|ψ(1)〉 = . . . .

Discuss in particular the behaviour of the momentum space wave function
ψ(1)(p) under this transformation.



90. The Pauli-Lubanski vector is defined by

Wµ :=
1

2
εµαβγJ

αβP γ.

Prove the following properties of Wµ and W 2 := WµW
µ:

WµP
µ = 0,

[Pµ,Wν ] = 0,[
U(L, a),W 2

]
= 0,

[Wµ,Wν ] = −iεµνρσW ρP σ.

91. Determine the Pauli-Lubanski vector for a Dirac field and compute W 2.

92. Determine the Pauli-Lubanski vector for a Weyl field and compute W 2.

93. Determine the Pauli-Lubanski vector for a vector field V µ and compute W 2.
What is the result for W 2 if the vector field fulfills ∂µV

µ = 0?

94. Determine the Pauli-Lubanski vector for an antisymmetric tensor field T µν

and compute W 2.

Hint: An algebraic computer programme like FORM might facilitate the
task.

95. Derive the commutation relations of the generators Tx, Ty,M of the eu-
clidean group E(2) of translations and rotations in the two-dimensional
plane,

~x ′ = D~x+~b,

by employing the matrix representation(
D,~b

)
→
(
D ~b
0 1

)
, D ∈ SO(2), ~b ∈ R2.


