Exercises for T2, Summer term 2017, Sheet 7

1) Ladder operators

The ladder operators of a one-dimensional harmonic oscillator a, a^{\dagger} fullfill the commutation relation $[a, a^{\dagger}] = 1$. Show that:

1.
$$\left[a, (a^{\dagger})^n\right] = n(a^{\dagger})^{n-1}$$

2.
$$\left[a, f(a^{\dagger})\right] = f'(a^{\dagger})$$

Assume that the function f is defined as a power series.

2) Commutators

Determine the following commutators:

In one dimension: $[X^2, P^2]$

In three dimensions: The operator A is defined as $A = X_1 P_2 - X_2 P_1$. Determine $[A, X_1^2]$.

3) Expectation values for the harmonic oscillator

Calculate the expectation values $\langle X \rangle_n$, $\langle P \rangle_n$, $\langle X^2 \rangle_n$, $\langle P^2 \rangle_n$ for the energy eigenstates $|n\rangle$ of the harmonic oscillator ($\langle O \rangle_n \equiv \langle n|O|n\rangle$). Use algebraic methods with the ladder operators.

4) Coherent state I

The state $|z\rangle \equiv |\psi_z\rangle$ (with $z \in \mathbb{C}$) of a harmonic oscillator is defined via the eigenvalue equation $a|z\rangle = z|z\rangle$. Show that the solution of this equation is

$$|z\rangle = Ce^{za^{\dagger}}|0\rangle$$
.

Use the equations derived in excersice (1). The state $|z\rangle$ is an example of a coherent state.

5) Coherent state II

Write the coherent state $|z\rangle$ as a linear combination of the normalized energy eigenstates $|n\rangle \equiv |\phi_n\rangle$ of the harmonic oscillator. Calculate $\langle n|z\rangle$. Determine the normalization constant C (up to an arbitrary phase $e^{i\alpha}$) by imposing the normalization condition $\langle z|z\rangle = 1$.