Übungen zu T2, Sommersemester 2016, Blatt 5

1) Reelle Wellenfunktion

Betrachten Sie den **Spezialfall** einer **reellen** Wellenfunktion $\varphi(x)$ in einer Dimension, die für $x \to \pm \infty$ verschwindet. Zeigen Sie, dass in diesem Fall der Erwartungswert des Impulses Null ist.

2) Die Wellenfunktion eines Teilchens mit einem Freiheitsgrad habe die Form

$$\psi(x) = \varphi(x)e^{ip_0x/\hbar}$$

mit reellem p_0 und einer **reellen** Funktion φ mit

$$\int_{-\infty}^{+\infty} dx \, \varphi(x)^2 = 1 \,,$$

d.h. $\phi(x)$ ist wie die Funktion aus Aufgabe 1) Berechnen Sie den Erwartungswert des Impulses. Welche physikalische Bedeutung besitzt die Größe p_0 ?

3) Impulsoperator

Bestimmen Sie die Erwartungwerte von P und P^2 für die Wellenfunktion $\psi(x)$ des Gaußsches Wellenpakets von Aufgabe (4.5). Was erhält man für die Impulsunschärfe ΔP ? Überprüfen Sie die Unschärferelation.

4) Rechnung im Impulsraum

Bestimmen Sie die Impulsraum-Wellenfunktion $\tilde{\psi}(p)$ des Gaußschen Wellenpakets von Aufgabe (4.5). Bestimmen Sie die Erwartungswerte von X, X^2, P und P^2 . Seien Sie dabei effizient und nutzen Sie z.B. geeignete Variablentransformationen, um die Integrale auf einfache Standardformen zurückzuführen oder um Resulate auf vorherigen Aufgaben zu nutzen.

5) Impulsraumwellenfunktionen mit minimalem Unschärfeprodukt

Jene Impulsraumwellenfunktionen $\tilde{\psi}(p)$, für die das Produkt aus Orts- und Impulsunschärfe den minimalen Wert $\Delta X \Delta P = \hbar/2$ besitzt, sind durch die Gleichung

$$\left(\frac{X - x_0}{\sigma} + i \frac{p - p_0}{\hbar/2\sigma}\right) \tilde{\psi}(p) = 0$$

charakterisiert. Dabei bezeichnet p den Impulsoperator in der Impulsdarstellung und $X=i\hbar\,\partial/\partial p$ den Ortsoperator im Impulsraum. x_0 ist der Erwartungswert des Ortsoperators, p_0 der Erwartungswert des Impulsoperators und $\sigma=\Delta X$ die Ortsunschärfe. Ermitteln Sie $\tilde{\psi}(p)$ durch Lösen der Differentialgleichung, wobei in der Endlösung natrlich die übliche Normierungsbedingung

$$\int_{-\infty}^{+\infty} dp \, |\tilde{\psi}(p)|^2 = 1$$

erfüllt sein soll.

6) Konfigurationsraum-Wellenfunktionen mit minimalem Unschärfeprodukt

Bestimmen Sie durch Transformation vom Impulsraum zum Konfigurationsraum die Wellenfunction $\psi(x)$, für die das Produkt aus Orts- und Impulsunschärfe den minimalen Wert $\Delta X \Delta P = \hbar/2$ besitzt. Starten Sie von der Impulsraumwellenfunktionen aus Aufgabe (5).

7) Kommutierende Operatoren

Seien A, B und C lineare Operatoren mit der Eigenschaft [A, C] = [B, C] = 0. Folgt daraus auch, dass [A, B] = 0 gilt?

8) Zweidimensionaler Hilbertraum und Darstellung von Bra- und Ket-Vektoren

Durch $\{|a_1\rangle, |a_2\rangle\}$ sei in einem zweidimensionalen komplexwertigen Hilbertraum eine orthonormierte Basis gegeben (a-Darstellung). Zwei Vektoren seien durch

$$|b_1\rangle = \frac{1}{\sqrt{2}}(|a_1\rangle + i |a_2\rangle) \quad |b_2\rangle = \frac{1}{\sqrt{2}}(|a_1\rangle - i |a_2\rangle).$$

- (a) Zeigen Sie, dass $\{|b_1\rangle, |b_2\rangle\}$ ebenfalls eine Orthonormalbasis bilden (b-Darstellung).
- (b) Geben Sie die Koordinaten-Darstellung der Ket-Vektoren $|a_1\rangle$, $|a_2\rangle$, $|b_1\rangle$, $|b_2\rangle$ und der jeweiligen Bra-Vektoren in der a-Darstellung an.
- (c) Bestimmen Sie die $|a_1\rangle$, $|a_2\rangle$ als Funktion der $|b_1\rangle$, $|b_2\rangle$ und bestimmen Sie die entsprechende Koordinaten-Darstellung.
- (d) Bestimmen Sie die Einträge (als Funktion der Skalarprodukte $\langle b_i | a_j \rangle$, i, j = 1, 2) der 2×2 Matrix, welche die Vektoren in der a-Darstellung in die der b-Darstellung überträgt. Nutzen Sie dazu die in der Vorlesung diskutierten Vollständigkeitsrelationen.

9) Abstrakter linearer Operator

In einem komplexen Hilbertraum sei durch $T:=|u\rangle\langle u|$ (mit $|u\rangle\neq 0$) ein linearer Operator definiert.

- (a) Ist T Hermitesch?
- (b) Welche Eigenschaft muss $|u\rangle$ besitzen, damit T ein Projektionsoperator ist?
- (c) Sei B ein beliebiger linearer Operator. Zeige, dass die Spur des Operators TB durch $\langle u|B|u\rangle$ gegeben ist. Beachte, dass die Spur eines Operators nicht von der gewählten Basis abhängt.