Hoofdstuk 2

Propagators, scattering theory and
n-point functions.

2.1 Non-relativistic propagator theory.

The evolution operator in the Schrédinger picture U (t,t") satisfies

. a - A n o
(”ﬁ — H) Ut,t')=0 (2.1a)
lim Ut,t')y=1. (2.1b)

If we wish to implement causality, we must impose the condition ¢ > ¢’ . We therefore
introduce the operator

A~

G(t, 1) = —ib(t — U (t, 1) (2.2)

which describes propagation forward in time and which we shall call the causal propagator.
In the configuration representation we have

G(F, 63, ¢) = —ib(t — ) FT (L, 0)|) | (2.3)

and this propagator gives the probability amplitude that a particle which you detect at ¢’
in 7’ shall be detected later at ¢ in Z . Since

0
—0(t—t)=46(t—1t 2.4
0t — ) = 3t —t) (2:42)
(Z|7y = 6B (7 — &) (2.4b)
the causal propagator obeys
(m% — H) G(Z,t; 7, t) = hoW(z — 2) (2.5a)
G@,t;7,t)=0, t<t. (2.5b)
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From the definition of the evolution operator it follows that
V(T t) = @'/d%’ G@ 67, )@, ), t>t, (2.6)

which is the mathematical formulation of Huygens’ principle for wave functions in quantum
mechanics.
For a Hamiltonian of the form

A~

_ V(Z,1) (2.7)

2m

we can write as

~

(2.5)
0
(ma — 0) Gz, t; 2, t) = W (x — o) + V(Z,t)G(Z, t; T, 1) . (2.8)
Let Go(t,t') = —if(t — ')Uy(t, ') be the free causal propagator which obeys
0 ] — = 4l (4) /
Zha— o | Go(Z,t; 2, t") = hd'™W (xz — &) (2.9a)
Go(Z,t;7,t') =0, t<t, (2.9b)
then we can write the solution of the propagator equation (2.5) as

1
G(f,t;fl7tl> = Go(f,t;f/,t/) + ﬁ/d4l’1 Go(f,t;fl,tl)v<fl,t1>G(fl,tl;f,,t/) . (210)

Through iteration we can write the previous equation as
1
G(fa t? fla t/) = G0<f7 t7 :fla tl) + ﬁ / d4$‘1 Gﬂ(fa tu fl; tl)v(flv tl)GO(flv t17 fla t/)

1
+ ﬁ//d4$1d4$2 Go(Z,t; 21, 00)V(Z, t1)Go(Z1, t1; Ta, to)V (Ta, t2)Go(Ta, to; &, 1)
Foee L (210)

We can represent this perturbation series diagrammatically by introducing the following
correspondence rules:

(*fl?tl) (527152)
Go(Z1,t1; 25, t2) = ) (2.12a)
1 = _ vawvx
V(@) = o . (2.12b)
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The perturbation series is then diagrammatically equal to

(Z,t) (Z,1) (Z,t)
A+ (21, t1) + +oen (2.13)
(@.1) (1) (#.1)

This diagrammatical representation of the perturbation series allows us to make a simple
physical interpretation of every term. The first diagram represents free propagation from
(@,t") to (¥,t) . We assume that time travels upwards so that there is causal ordering in
this direction. The second diagram represents a particle that propagates from (Z’,¢') to
(%1, t1); there the particle is scattered by the potentialV (71, ¢;), and after that propagates
further up to (#,t). Because of the superposition principle, we have to integrate over
all 71 en t; where the scattering occurs. Notice that the free propagators which obey
(2.9) automatically ensure that ¢ < ¢; < t so that causality is respected. The third
diagram represents a contribution to the propagation amplitude from (#’,t) to (¥,t) with
intermediary scatterings at (71,¢;) and (25, t2). It is obvious that the exact propagator can
be obtained by summing over all possible ways of scattering between (7,¢’) and (Z, t), what
is precisely the diagrammatical transcription of the perturbation series (?77). The advantage
of the diagrammatical representation is that instead of a formal solution of the Schrédinger
equation by means of a perturbation series, we now have a much more intuitive way of
generating this same series by simply drawing all possible physical scattering processes and
translating them into formulas using the correspondence rules(2.12).

2.2 Non-relativistic scattering theory: the Born series

Consider a non-relativistic particle which scatters from a heavy particle at rest. We assume
this second particle to be heavy enough so that we can describe this process simply as
potential scattering in a time independent potentialV (), so that its wavefunction obeys

oY h?

th— =HY=|——A+V|v. 2.14

W iy [ o } " (2.14)
We assume that V' (Z) has short range so that the particle can be considered to be free, far
from the scatterer, and to eveolve according to the free Hamiltonian. Because we are only
interested in how the state of the particle changes due to the scattering process, we define
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the scattering operator as:

S = lim e 0 (L, ¢)ewHo!
t——+o00
t'——o0
—  lim eéﬁote—%ﬁ(t—t’)e—%ﬁot’
t—-+oo
t'——o0
_ ; ] !
= tk+moo Ur(t,t') (2.15)
t'——o0
with U; the evolution operator in the interaction picture. Using the definitions of the
causal propagators GG en (i, this can be rewritten as:
S=—i lim Gy'(t,0)G(t,t)G5 (0. t) . (2.16)
t——+o00
t'——o0
This formula can be interpreted in the following way. The particle that is scattered by the
potential V' is coming in from asymptotically far in the past (t — —o0) and also in space
and reaches the short range potential (a heavy particle at rest) around ¢ ~ 0 en Z ~ 0.
Because we are not interested in the free propagation from ¢’ = —oo to t' = 0 we eleminate
this free propagation by G;'(0,t'), ' — —oo. Analogously for Gg'(t,0) with t — +oo0.
This elimination of free propagators at the start and end of the process is sometimes
called amputation.. Diagrammatically (see equation (2.13)) the external propagators are
amputated.
To amputate the external propagators in the asymptotic regions, we rewrite the per-

turbation series as
1
G(z,2") = Go(z,2") + 7 /d4yd4z Go(x,y)T(y, 2)Go(z, z') (2.17)

where we introduced space time coordinates = = (¢, ¥). Comparing with the perturbation
series (?7) for the propagator we find the Born series for 7™

T(y,2) = V)6 (y—2) + V(5)GColy, )V (2)

h

1
+ﬁ d*ry V(y)Goly, 1)V (21)Gol1, 2)V (2)

1
t33 d'a1d s V(y)Goly, 21)V (21)Go(w1, 22)V (22) Go (w2, 2)V (2)
oeee (2.18)

which after resummation can be written according to (??) as
1
T(y,2) = V)P (y - 2) + V)G, 2)V(2) (2.19)

Defining the T—operator by X
T(x,2") = (Z|T ()|, (2.20)
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we find that 7" fulfills

Tt t) = V5t — 1) + ;V( VGt )V () (2.21)
and we can rewrite (2.17) as
G( ) Go t, t /dtl/dtg GO t, tl (tl,tQ)Go(tQ, ) . (222)

In the configuration representation, the T—operator yields the amputated propagator T'(x, z’) =
(Z|T(t,t')|2"), and has the following diagrammatical representation:

xT
xT
I,/
l,/

which can be obtained from equation (2.13) by amputating the asymptotic free propagators.
The connection between the amputated propagator T and the S-matrix now follows from
(7?) and (2.22). Since for ¢’ < 0 and ¢t > 0 we have Gy(ty,t') = (ty — t')e~ 172G (0, 1),
Golt, 1) = 0(t — t1)Go(t,0)er ™l and Go(t, t') = iGyo(t,0)G(0,t') and we find

+oo
S = 1—i lim —/ dtl/ dty en T (4 t,)e otz
t—+oco h
t'——oc0o

= 1- %/dtl/dtg eiﬁﬁotljj(thtz)ef%ﬁm : (2.24)

The transition amplitude (f|S]i) that a particle in the initial state |i) scatters into the
final state |f) is then:

(1181) = (1) 5 [ v [ do e 0B 1T 0, )l (2.25)
The non-trivial scattering is thus indeed given by the matrix elements of the T-operator

or amputated propagator. Introducing the wavefunctions ¢;(z) = <f]i>e’%Eit and Y (z) =
(Z|f)e"wFst we can write the non-trivial scattering matrixelement as:

1S = —% / dhud's’ ()T (@, oo (2.26)

This formula makes the connection between scattering and the amputated propagator very
explicit and transparent.
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For potentials which are independent of time, the integrals over ¢, en £, can be explicitely
calculated. Because of translational invariance in the time direction, we have:
T dE

“REG—) (R 2.2
5 7¢ " (E) (2:27)

T(ti,ty) =T(ty —t2) = /

— 00

with T(E) the Fourier transform of 7. Substitution in (2.25) yields:
(FIS1) = {fli) — 2mid(Ey — E)(fIT(E)]i) - (2.28)

Introducing also the Fourier transforms of G and Gy:

A +° JE . ,

Gt —t2) = / 5 G(E Je~nEli1=t) (2.29a)
A T dE . i
Go(ti —t2) = / gGo(E)e‘ﬁE(“‘”) : (2.29b)

then (2.22) and (2.25) taking into account V(¢) = V, become

A A

G(E) = Go(B) + Go(E)T(E)Gy(E) (2.30)
and
T(E)=V +VG(E)V . (2.31)

By iteration of these equations we finally obtain the Born series for the T-matrix:

T(E) =V + VGV + VG VGV +--- . (2.32)

2.3 Non relativistic multi-particle scattering

When we consider scattering of several particles, a new aspect has to be taken into ac-
count: the indistinguishability of particles. Let’s for example consider the scattering of
two particles in a time independent potentialV (Z). The incoming particles have momenta

/;:1 and Eg, the outgoing Ig’ and lgz Because of indistinguishability, there are two processes
that can take place: the particle with /ﬁ gets scattered to k , the one with ky to k}; and
the exchange-proces: k1 gets scattered into k’ and k- into k’ Dlagrammamcally

R Ky ki s R s

_ + . (2:33)



The plus sign is for bosons, the minus sign for fermions — because of the symmetrical
respectively antisymmetrical behaviour of the wavefunctions of bosons and fermions under
permutation. From the diagram, it is also clear that the particles don’t interact with each
other and only with the potential V(Z) (whose T-matrix is represented by a circle). The
T-matrix for two-particle scattering in an external potential is thus:

(k. Ko\ T1ky ko) = (K3 [T V) (Ro|T1kz) £ (Ry|T V) (R |TE) - (2.34)

One can easily write down analogous formulas for n-particle scattering in an external
potential. There is however an elegant way to automatically generate the correct exchange
processes with appropriate signs: namely the introduction of field operators that create and
annihilate particles. Indeed, we can rewrite the non-relativistic one-particle propagator as:

GZ 7, t) = —if(t —t') (@, t|7t)
= —if(t —')(O (7, )y (7, 1)[e) . (2.35)

The causal propagation in time can now be absorbed in the definition of the time orde-
red product. Let A and B be two operators, then we define the time ordered product
T(A(t)B(t)) as:

T(A)B(E)) = {A@ )(tj)( t >t

t;, t<t
= 0t —tAQ)B(') £ 0 —t)B(t)A(t) , (2.36)

where the plus sign is for bosonic operators and the minus sign for fermionic operators.
Since in non-relativistic field theory there is conservation of the number of particles, we
have

Y(Z,t)|©) =0 (2.37)

(¢ has only annihilation operators, see (1.205)) and we can write the causal propagator as:
G(F, 42 1') = —i(O|T(W(F, )6 (7, 1))|) . (2.38)

The time ordered product has taken care of the restriction that only causal propagation is
possible by, for ¢ < t'; setting the field operator 1(Z, t) to the right so that because of(2.37)
the groundstate is annihilated and we get zero.

We can now ensure causal propagation in an elegant way for two particles by defining
the following two particle propagator:

G(T1,t1, T, o 11,81, T, 1) = (=1) (O ((, t2) (1, 1)1 (7, 1) (75, 1)) ]©) . (2.39)

Here the time ordered product for n bosonic operators is defined as:

A ~ A ~ A
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and for n fermionic operators as:

~ ~

T(Ar(h)As(ta) -+ An(tn)) = (=17 A (83 Aiy (biy) -+ Aiy (83,) by >ty > > 1,
(2.41)
with dyi9i3---4, = P(123---n) and P the permutation which brings the operators in
chronological order with time augmenting from right to left. Notice that for fermions,
every term is weighted by the parity of the permutation which brings the operators in the
correct order. This parity factor automatically takes care of the desired symmetrical or
antisymmetrical behaviour under permutation of particles:

T(AP(I)AP(Z) te AP(TL)) - (:t:l)PT(Al? AQ? cee JAN) . (242>
Particularly, for the causal two-particle propagator:

G(Jfl,tl,xg,tg,l’l,t/l,_’/ t,) = :]:G(fQ,t27fl,t1;fll,t/hfé,té)
= :i:G(.ﬁEl,tl,.’L'Q,tQ,l'z,t/z, _’ll,tll) s (243)

where the minus sign is for fermions.

For further discussion, we will restrict ourselves to particles that move independently of
each other in a time independent potential (free non-relativistic field theory). In this case,
the calculation for causal multi-particle propagators reduces to the one of single particle
propagators. Indeed in the case of two-particle scattering, the particles created at | in 7}
and at ¢, in 2, will propagate independently of each other to ; at t; or to 7y at to. The
time ordered product ensures causality: ¢, > ¢}, to > t, of t; > t},, to > t}. Therefore there
are two possibilities: the particle from &, t| propagates to 71,¢; and the one from %, t;, to
T, ta, or the particle from 7, ¢] propagates to @y, ts and the one from 7, ¢, to Z1,t;. Thus
we have:

(OIT (1 (2, t2)10(&1, )0 (), )01 (3, 15))|O)
(OIT (4 (Z1, )" (7, 1)) [ONOIT (¥(T2, 12)1' (75, £5))|O)
£ (OIT (4(T, t2)0" (7, 1))|O)(OIT () (Z1, 1)1 (75, £5))©) . (2.44)

The minus sign for fermions comes from the extra permutation that is necessary to put
the operators in the correct time ordering.
From the definition (2.39) of the causal two-particle propagator, it follows then that:

G(flvtla527t2;l_y17t,175/27t/2) = G(flvtl;flbt/l)G(f?)tZ;f,%t/z)

If we substitute the Born series for the one-particle propagators in the previous expression,
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we find diagrammatically for the two-particle propagator:

X X2 X1 X2 X X2
A A + + A
/ / / /
Ty Ty Ty Ty Ty Ty
X1 ) X1 X2 T X2
+ A + +
/ / x/
Ty Lo Ty Lo Ly 2
X1 X2 X1 )
+ + + e (2.46)
! ! / /
Ty Ty Ty i)

Keeping only the non-trival terms where both particles scatter and amputating the external
free propagators, we obtain the amputated two-particle propagator which in the case of
two independently moving particles (free field) can be written in terms of the amputated
one-particle propagators:

T(xy, w052, ) = T(x1, 2))T (22, 25) £ T(x1, 25)T (22, 2) (2.47)
For the matrix elements we find:
(K4, K3\ T ey, k) = (R4 |T R (5 T V) = (3| T ey ) (R4 1R (2.48)
We can now define the causal n-particle propagator as:

G(x1, T2y, Tns Y1, Y2y - -5 Yn)
= (—0)"(OIT (P (z1)h(w2) - - ()T (Y1) 0 () - - ¥ (1) [©) . (2.49)

This time ordered product represents the causal propagation of n particles from the space-
time points (y1,¥s, - .., Yn) to (1,22, ...,ys). The expectation value in the ground state of
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a time ordered product of n field operators is called a n-point function. A n-particle propa-
gator is hence a 2n-point function. For free fields describing particles moving independently
of each other we have Wick’s theorem which says that:

G(xla Loy .oy Ty Y1, Y2, - - - 7yn) = Z(j:]')PG(xP(l)) yl)G(xP(Z)v 92) T G(IP(H)a Z/n) (250)
P

with P a permutation of the particles and where the plus sign is for bosons, the minus
sign for fermions. This is a straightforward generalization of the previous identity for two
particles to n particles(no proof; for a proof see standard text books) and is a simple
mathematical translation of the physical fact that the particles move independently and
are indistinguishable (permutation symmetrie).

By keeping only the non-trivial terms in the Born series where all particles scatter and
amputating the external free propagators, we obtain the amputated n-particle propagator.
Non-trivial S-matrixelements can be obtained from this by :

<f17 f27 R fn|‘§’i17i27 cee 7in>nt
i n
= (_ﬁ) /d4x1d4x2 o drapdiydrys - - dhy, Vi (@)Y}, (22) - - % (2)
T<I17 oy oy Ty Y1, Y2, - - - 7yn)1/)i1 (yl)wiz <y2) to wln (yn) ) (251>

which because of (??7) can be rewritten as

<f17 f27 ey fn|'§’ilai2> s 7in>nt
d*ridtay - d41’nd4y1d492 e d4yn @/);krl (%)1/1}2 (z2) - '¢}n (Tn)

(OIT (¢ (1) (w2) - - () (1) YT (2) - T (¥n))|O)amnp
Vi, (Y1) Vi, (y2) - - i, (yn) - (2.52)

We have derived this formula for particles which move independently from each other in an
external potential. Because of the generality of the formula (it only uses general quantum
mechanical principles and the existence of asymptotic free particles and does not refer to
the precise Hamiltonian of the field theory), it is also valid for more general scattering
processes where the particles interact amongst themselves.

T

2.4 Relativistic one-particle and multi-particle propaga-
tors for spin 1/2

The causal relativistic propagator Kp(Z,t; 2’ t") for a spin-1/2-fermion satisfies the equa-
tion

(m% — H) Kp(@t;7,t) = bW (z — 2) (2.53)
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with H the Dirac-Hamiltonian in an external electromagnetic field:

A

H = cd. (ﬁ— 94’) + Bmc + eV . (2.54)
C

We have deliberately not yet imposed any causal boundary conditions in time for Kz
because these are not a priori clear for the relativistic case. For example, let’s naively take
the definition

Kp(Z t2,t) = —if(t—¢)(@|U(tt)|T)
= —if(t — ) (F|e w7
= —if(t Z¢(+) YO (e wEn(t=t)

+Z¢< (&)etiEnt ”] : (2.55)

then positive energy fermions as well as negative energy fermions propagate causaly —i
.e. forward in time. This means that negative-energy fermions behave as real particles.
This is wrong because according to the hole-theory of Dirac, it is the removal of a negative
energy particle which acts causally as a real particle with opposite charge. Feynman solved
this problem by imposing anti-causal conditions for the negative energy fermions, i.e. they
should move backward in time. Indeed, if ¢ < ¢’ (anti-causal), the time dependence of
negative-energy solutions in (?7) can be rewritten as

orEnlt=t)) _ =1 En(t'—1) (2.56)

and hence is the same as for positive energy solutions which move from ¢ to ¢ and thus
causally. Imposing anti-causal boundary conditions in time to negative-energy solutions
also ensures that these solutions behave as postive-energy soltutions with opposite charge
because a charge that runs backward in time looks like an opposite charge that runs forward
in time.

The correct causal relativistic propagator with anti-causal conditions for the negative-
energy solutions is then:

Kp(Z,t,7,1) = — i@(t—t’)2¢(+( 7" () 7 En ()
Zw( (Bl (@ )er =) (2.57)

Notice that the negative-energy solutions have a relative minus sign with respect to the
positive-energy solutions because otherwise the propagator equation (2.53) would not be
fulfilled. Indeed, from (??7) and

9, .., _ /
50t —1) === 0 —t) =d(t 1) (2.58)
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we obtain :

(m% - H> Kp(Z,t;@,t) = [Z Y@ () + Zw *(Z)
= oWz —2), (2.59)

where we used the completeness relation of the energy-eigenfunctions. The relativistic
evolution equation for ¢(Z,t) is then:

bED) = i / ' Kp(#,1: 8, —00)(i, —o0)
i / B1 K (T, t: 7, +00)i(F, +00) (2.60)

To solve the Dirac equation, we must impose initial conditions at ¢ = —oo for the positive-
energy part and final conditions at ¢ = +oo for the negative-energy part corresponding
with causal and anti-causal propagation.

We can write the propagator equation (2.53) in a manifestly Lorentz invariant way by
multiplying the right hand side and the left hand side by 7 and dividing by ¢. Then
because of (2.54) one obtains that

a i
|:Zh (@’YO + Vz’}/ > -

(ih@ — EA — mc) Sp(z;z') = hoW(z — 2) (2.62)

Ol ®

(VA°+ Ay’ — mc)] Kp(z; 2 )y = hoW (z — ') (2.61)

or

with
Sp(z;a') = KF(-?:;:E’)
= —if(t Zz/ﬂ (@)D" (#)e#Bnlt—t)

+i0(t Zw (F)enEnlt=t) (2.63)

Notice that we use from now on the definition 6™ (z — 2') = 6(z¢ — 2))6®)(Z — 7') =
15(t — /)0®(Z — &) . The factor 1/c in the right hand side of(2.61) and (2.62) is now
absorbed in the Dirac-deltafunction.

The propagator Sg(z; ') is called the Feynmanpropagator. The advantage of working
with the Feynmanpropagator Sp = Ky, instead of the relativistic causal propagator Kp
, is that Sr satisfies a manifestly Lorentz invariant equation (2.62) and that manifestly
relativistically invariant perturbation theory is now possible . We can now in an analogous
way as for the non-relativistic propagator, expand the Feynmanpropagator in a Born series.
Indeed, we can rewrite (2.62) as

(i) —m)Sp(z;2') = 6W(z — ') + ed(z)Sp(z; ') (2.64)
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where we introduced natural unitsh = ¢ = 1 hebben ingevoerd. By introducing the free
Feynmanpropagator S%(z; z’) which is a solution of

(i) — m)S%(z;2') = 6W(z — 2') | (2.65)

we can rewrite (2.64) as an integral equation for Sp:

Sp(x;2') = S%(z;2") + /d4x1 SO (x5 21)ed(x1)Sp(zy; ') (2.66)

By iteration, we find a solution in the form of a perturbation series:

Sp(z;2") = S%(z;2) + /d4x1 S (z; 1) ed(x)S%(x1; 2)
+/d4x1/d4x2 SO (z; 1) eA(x1)Sp(21; 20)eA(w2) Sh(20;2") + -+ . (2.67)

In contradistinction with the non-relativistic case, now propagation is possible in both
directions: forward in time (solutions with met positive energy) and backward in time (so-
lutions with negative energy which act as anti-particles with positive energy). If increasing
time runs upwards in the drawing, then we have four possibilities of time ordering to first
order in the coupling constante :

Diagram (a) represents an electron that scatters in an external electromagnetic field. Dia-
gram (b) represents the scattering of a negative-energy electron that runs backwards in
time. We interpret this as a positron that runs forward in time and scatters in the elec-
tromagnetic field. Diagram (c) represents a negative-energy electron that comes from &, ¢/
, runs backward in time to #1,t; and there gets scattered forward in time by the external
field to Z,t. We interpret this as the creation of an electron-positron pair by the external
electromagnetic field in Zq,t;, which after that propagates respectively to Z,¢ and 7', ¢'.
Diagram (d) represents electron-positron annihilation by the external field at 4, ¢, voor.
Notice that the arrow points in the direction in which the electron moves. Although a
negative-energy electron moves backward in time as seen by the observer in the lab frame
(according to time in the lab frame), the proper time 7 of this electron is always running
forward and his proper energy (measured in a frame fixed to the electron) is positive. The
arrow on the propagator points therefore in the direction of increasing proper time of the
elctron.

We can now, in the same way as for the non-relativistic case, define the amputated
causal propagatorK " by

Ki(oio') = Kp(asa) + [ d'y [[ats K@) KPP (o) Kia) - (269)
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and from this the non-trivial S-matrix element
(3l = =i [ d'a [ s wjla) K (s (o) (2.69)
Analogously we can define the amputated Feynmanpropagator T by
Selwia') = Splaia') + [ 'y [ @ Sz TwoSha) . @00
From Sp = Kpy° follows that T'=~"K 2", so that

(F181) = =iey [ d'a [ 'y G y(a)T(wsayin(a') @)

what constitutes a manifestly invariant form of the matrix element. Because the connection
between the evolution operator and the propagator for fermions has an extra minus sign
for propagation backwards in time, the phase factor €; is equal to 1 for scattering forward
in time and —1 for scattering backward in time.

For relativistic electron scattering we have the complication that electrons can move
forward as well as backward in time so that it is not apriori clear what are initial and
final states. This however can be solved quite simply by looking at the scattering process
from the eigen frame of the electron or from the standpoint of an observer whose time is
the proper timer of the electron. Then it is clear that the initial state correponds with
7 = —oo and the final state with 7 = +o00, or to put it differently, the initial state is where
the electron arrow starts, the final state iswhere it ends. Hence:

Electron-scattering (p,s) — (¢',s), ey = 1:

} o) =z m 1 s i(F-i—Et)
Yi(z) = ¢(ﬁ75)($;t> = m(QTf)?’/Qu (p)en'? (2.72a)
Uile) = W) = | (e TED (272h)
f @)Vt T E(p') (2m)3/2 p : :
Positron-scattering (p,s) = (p',s), ey = —1
(= O may o ML i a-EY
Vi(z) = g (@t) = E(p) (2%)3/20 (p)e n'? (2.72¢)
m

o (p)e 7P EED (2.724)

vie) = o) (@) =

Pair-creation of electron (p, s) and positron (', s'), ey = 1:

Yila) = o) (2) () = v (@) (2.72e)
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Figuur 2.1: At Z,t an electron-positron pair is created by the external field

Annihilation of electron (p, s) and positron (p, s'), €5 = —1:

Gile) =6 (@), ) = v (@) . (2.72f)

Indeed, take for example pair-creation of electron and positron. An electron starts at
t = 400 (1 = —o0) with momentum —p’, helicity —s’ and energy —E(p’), then travels
backward in time to &, ¢t. There it gets scattered, forward in time, to t = +o0 (7 = 4+00)
with momentum p, helicity s and energy E(p) (see figure 2.1). Therefore, the initial wave

function (7 = —o0) is the one of an electron with negative energy:
(=) (=) m 1 s (1 pm L (7 E—E't)
R - (273)

This electron has momentum —p" and because of (1.252) helicity—s’. The corresponding
positron that moves in the opposite direction in time has momentum p’ and helicity s’
The scattering is forward in time so that €, = 1.

We can now, just as in the non-relativistic case, write the Feynmanpropagator Sg as an
expectation value in the ground state of a time ordered product of field operators. Indeed,
we can expand the Dirac-field operator in a complete set of eigenfunctions :

b1 = Y [aw @) B 4+ bl (@)t (2:74)

)

with ¢§+) and wﬁ the eigen functions with positive respectively negative energy. We have

OITW(E OB, 1))0) = 6t 1) (Blaal|©)y™ () (@)e #(Fit=Fit)

i,J

=0 = 1) Y_(Ohbj|e)u” @y (@)eh %)
3
= 6t — ) Y w D@ @)e e

0t = 1) > w @) (@)et )
= iSp(x;a’) . (2.75)

By analogy with the non-relativistic case we define the Feynman-multi-particle propa-
gator as a 2n-point function:

SF(-CI:la:EQa'-->$n;ylay2a"'7yn)

= (=0)"(OIT (W (1) (2) - - (@n) i (21)¥(w2) -+ (2)[O) . (2.76)
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After amputation of the free Feynmanpropagators we can calculate the S-matrix elements
via:

<f17f27'"7fn|'§’il>i2>--- fn)nt = Hﬁfl/d%ﬁ xnd4y1 4yn Efl(%)“'ifn(ifn)
(OIT (W (1) - (@) (¥1) - ¥ (Yn))|OVampthi (y1) -~ i (ya) - (277)

2.5 Two point functions in Fourier space

Let’s use the integral representation of the #-function:

i ) +00 e—iw’r
0(r) = — lim dw — (2.78)
2T em0t+ J_ o w + 1€
then we can write the non-relativistic one-particle propagator as
oo g, e~ iw(t—t')
G tat) = / (@l )
oo 2m w g
+o0 —iw(t—t") )
_ / dw e Z uz L;z (t—t")
oo 2 wAie &
T dw oy wi(Z)uf ()
_ —iw(t—t") v i
= —e _ 2.79
/ o 2m XZ: W — wj + 1€ ( )

where we substituted w — w — w; with Aw; = E;. The parameter ¢ is infinitesimal and
positive. For a free particle (V = 0) we have i — k, 3., — [ & o )3, u;(Z) — *'% and the
one-particle propagator becomes:

oo g Bk (Z—7")—w(t—t"))
Gol / d / e (2.80)
W

— w(E) + i

with w(k) = hk?/2m.
Let ¢ be a Klein—Gordon field which we can assume to be generally complex, then we
can define an n-particle Feynmanpropagator via the 2n-point function:

Ap(@y,. @iy, oY) = ()BT (G(21) - $(an)¢ (y1) - 6" (ya))|O) . (2.81)

The free one-particle propagator is then

Ap(x,2") = (=i)(OIT(p(x)¢' (+'))|O) (2.82)
o o(z) = / o a(Rye 09y (R 7wt (2:83)
(2m)3/2 | /2w (k) .



3 1 T (7 : ’
A%(I;ZL’,) _ (—Z) |:0(t . t/)/ d’k 6zk' (Z2—Z )e—zw(k)(t—t)

+0(t’—t)/ d*k 1 e—iE'(f—f’)ez‘w(k)(t—t’) (2.84)
(27)3 2w (k) S

Using the integral representation of the f-function we obtain

+o0 dw A3k e—zw(t t) ik - (F-T) o~k (T-T)
AO (x;2") +
(27)3 2w(k) |w—w(k)+ic —w—w(k)+ic

(2.85)

where we did the substitutions w — w—w(k) and w — —(w+w(k)) . By changing k — —k
in the second term, we finally find

T dw Bk e—zw (t—t )ezk (Z—2")
AO ) _
o) = [ 5| Gy =

B +o00 dw d3k e—zwt t)ezk (Z—2")
B 3 w2 —w(k)?+ie

d4k: 71k (:): z')
- / 0 _ (2.86)
(2m)* k2 — m?2 +ie
In the last line we introduced four-vector notation: k = (ko, k), @ = (20, %), k-z =

kozo — k- & and used w?(k) = |k[? + m2.
We will now prove that the free one-particle Feynman propagator for Klein—-Gordon
fields obeys:
(O, +m*) A% (z;2") = —6W(z —2') . (2.87)

Indeed, for a free particle we have translation invariance in space and time. Therefore we
propose the following Fourier transform:

d*k A )
AO o _ AO —Zk'(z—g;) . 2
plx—2a) / (2 w(k)e (2.88)
Then "
(Dx + mQ)A?U‘(x - I/) = / (2 )4 (_kQ + WQ)A%(k)e_ik'(m—x') (289)
s
or because of 6 (z — ') = [ %eﬂw(%x/):
~ 1 1
Arlk) = B v : 2.
r(k) k2 —m?2 k2 — |k|2 — m2 (2.90)

The Fourier transform of A% has poles at

= +VEk2+m? = tw(k) , (2.91)
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so that A% (2 —2’) can not be unambiguously determined without specifying some contour
in the complex plane around the poles. The Feynman propagator which describes particles
with positive energy as moving forward in time and particles with negative energy as
moving backward in time, can be obtained with the following choice of contour:

Im ko

>

Indeed, let’s only look at the kg-integration. For ¢ > ¢’ the Jordan lemma of contour
integration is fulfilled if Im(ky) < 0, so we must close the contour in the lower halfplane
where the pole ky = +w(k) contributes because of the residue theorem:

dky e tholt—t) 1 e—iw(k)(t—t")
515 1T ey Mooy
o 21 ki — w?(k)t>v 2 2w(k)
Only particles with positive energy propagate forward in time. For ¢’ > ¢ we have to close
the contour in the upper halfplane so that here only the pole kg = —w(k) contributes:
dks e—ikzo(t—t’) 1 e-i—iw(k)(t—t’)
55 1T e, 2o ooy
o 21 ki — w?(k)v>t 2 2w(k)
and only particles with negative energy propagate (backward in time). Adding both con-
tributions we find

3 L . ,
AY(z—2') = —i {e(t - t’)/ k1 otk (F=F") o —iw(k)(t—t")

(2.92)

(2.93)

+0(t’—t)/ ¢’k 1 otk (@) giw (k) (t—t) (2.94)
(27)3 2w(k) '

what agrees with (?7). We can now deform the contour by giving the positive energy pole an
infinitesimally negative imaginary part and the pole with negative energy an infinitesimally
positive imaginary part:
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—w + i€’

Y
Y

w — e’

so that
ko = £(w(k) —ig") (2.95)

or
k2= kP —mP4ic=k —m?+ie=0. (2.96)

The infinitesimal deformation of the contour and hence the implementation of the correct
causal propagation can therefore be obtained by the simple substitution m? — m? — ic,

and thus we find
dik etk (z—2a')

AY(z —2') = / 2.97
F( ) (2m)4 k2 — m? + ie (2.97)
which again agrees with (77).
In an analogous way, the Fourier representation of the Feynman-propagator of Dirac
particles can be found. The free Feynmanpropagator S% satisfies

(i) — m)S%h(x — 2') = 6W(z — o) (2.98)
with
0 / d* —ik - (z—z') Q0
Sp(r —2') = / (27r)46 Sp(k) . (2.99)
By substitution we find that the Fouriertransform S satisfies
(F —m)Sh(k) =1 (2.100)
or .
Sp(k) = £t m (2.101)



We can again implement causal propagation by the substitution m? — m? — ie and finally
obtain

d*k F+m e (!
0 _ —ik - (x—x
Sz —2) = / )t i (@), (2.102)

Analogously as for the Klein-Gordon propagator, we can show (exercise) that the Feyn-
manpropagator of the photon field in the Feynman gauge (Gupta-Bleuler with A = 1)

defined by
AO

Fuv

(= 2) = —i(O|T(Au(z) Ay (")) |O) (2.103)

satisfies
A

(& — 1) = g6 M (@ — ') . (2.104)

After Fourier transformation we find

A% (o —a)=— / d'h et (2.105)
Fuv - g,ul/ (27T>4 kQ T ic . .

Forpy = ¢ = 1,2,3 this agrees exactly with the Klein—-Gordon propagator of a massless
particle.

2.6 Feynman rules for QED

Let’s consider first the simple case of electron- (or positron-) scattering in an external
electromagnetic field AS*(x). The Feynman rules which we will establish are the ones
for 2n-point functions (which differ with factors —i from the n-particle propagators). We
define diagrammatically:

x n Y = (Bo|T(tho(x)¥y(y))|O0) = iSp(z —y)  (2.106a)
T A~~~ X = —ied™(2) (2.106b)

with g the free Dirac field and |©g) the corresponding vacuum state. Because of (2.66) ,

the two-point function (O|7(¢(z)1(y))|O) for a Dirac field in an external electromagnetic
field Afft satiesfies the integral equation

(OIT (¥(x)¥(y))18) = (B0l T (vo(2)¥o(y))|O0)
+/d4131(@olT(wo(w)@o(l‘l))I@o>(—ieAZXt(xl))<@IT(¢(CE1)E(y))|@> - (2.107)
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By iteration one finds the diagrammatical perturbation series for the two-point function:

x T x
®
)
A + I + + e (2.108)
T
)
Y Y Y

Notice that the arrows on the free propagators point in the direction of growing proper
time of the electron. The end points = and y as well as the intermediary points x; and
Zo can be in each others future as well as past, as measured by a clock at rest in the lab

frame. The integration over x¥ 29, ... is thus unrestricted. If xyp > yo we can subdivide

the integration over z9 in 29 < yo, yo < 2! < 2° and ¥ > 2°. This corresponds with the

following diagrams where the time in the lab frame flows upwards:

T T I
T Y Y

They represent respectively electron-positron pair creation , electron scattering and electron-
positron pair annihilation. If 2y < yy we have electron-positron-annihilation with = <> y,
positron scattering and electron-positron-pair creation with z <+ y. These six processes
are described by one and the same Feynman diagram. The same analysis is valid for higher
order Feynman diagrams.

Just as in the non-relativistic case we can consider electron-electron scattering as scat-
tering of one electron in the external electromagnetic field generated by the other electron.
In the Feynman gauge (Gupta-Bleuler with A = 1) the photon fielsd obeys

A, = 7.

= eyt . (2.109)

The unique solution which obeys causal propagation conditions is given by

M) = [ e A%, (o0 = 22)60 )"0 () (2.110)

since the photon propagator A% L 18 because of (2.104) precisely the appropriate Green’s
function for this equation which implements the correct causal propagation. The electro-
magnetic field radiated by the second electron when it goes from the initial state |is) to
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the final state | f2) is:

Ay(ar) = / &y AL (01 — 22)eD , (12)7 iy (@) (2.111)

The corresponding Feynman diagram is in lowest order

T T

f2
= . (2.112)

T T

If we take as initial state for the second electron, the state of a free electron that starts in
the spacetime point ¢/, and as final state, the state of a free electron that arrives in the
spacetime point y, we have

biy(z2) = (2a2Yo(y)|O0)
= (80|T (o (w2)10(y')O0) = iSp(x2 — y) (2.113a)
bp(x2) = (x2[to(y)|O0) (2.113b)
= Uy, (x2) = (Oo|T(%o(y)1o(w2))|O0) = iSp(y — x2) - (2.113¢)

The external electromagnetic field is then because of (2.111) given by

Aue) = / da (i), (1 — 22))(iSP(y — 22)) (—ier*)(iSH(as —y)) . (2114)

and by applying the Feynman rules for propagation in an external field we find for the
two-point function:

/d4x1 /d4x2 (iS%(x — 1)) (—iey") (iSh(z1 — 7))
iAF,, (11 = 22) (iSp(y — w2)) (—ier”)(iS}(z2 — y)) . (2.115)
We can represent this amplitude diagrammatically as

T Yy

y 9 . (2.116)
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Herein is
z > r =iSy(r —2') (2.117)

a diagrammatical representation of the electron propagator,
x M= —ie’y“/d% (2.118)

a diagrammatical representation of the elementary electron-photon interaction which we

call the vertex and ,

i L= iAY, (=) (2.119)

a diagrammatical representation of the photon propagator.

We can now give an elegant physical interpretation to this diagram. Two electrons
start respectively in 2’ and y'. The first electron propagates freely to x1, where it interacts
by emitting a virtual photon. After the interaction, it propagates further to z. In the
mean time the virtual photon propagates from x; to x5, where it is absorbed by the second
electron which propagates further to y. It is clear that we also have to add the exchange-
diagram to get the total amplitude to order e? .

Up till now we restricted ourselves to electron scattering. But in the mean time the
Feynman propagator for photons naturally appeared into our calculations, albeit as propa-
gator for an intermediary photon which is exchanged between electrons in electron-electron
scattering. But nothing stops us from using the same photon propagator to describe pho-
ton scattering. Compton scattering is the scattering of a photon by an electron. The
two-particle propagator which describes this process is

(OIT(Y(x)Au(y)d () Au(y))[O) - (2.120)

If we apply the Feynman rules, we have to order e*:

T y T y

21

A + o (2.121)

)

T y v ' y v

We may indeed use the same Feynman rules as for electron-electron scattering, because the

electron that starts from z’ and at z, absorbs a photon, does not make a difference between
a virtual photon (that will be absorbed furtheron by an electron or positron or any other
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charged particle and in this way transmits momentum and hence causes scattering) and a
real photon that was emitted from 3/. The amplitude to order €? is thus

[ [t (8%, - 20)E8h ~ ) (-ier)
(i59(21 — ) (—ier”) (iS22 — 1)) (i, (22— ¥)) . (2:122)

Let’s now consider the following order e2-diagram:
x

22
, (2.123)
21

:C/

obtained by letting the emitted photon in the Compton scattering diagram be absorbed
by the very same electron. This is an example of a self-energy diagram . Depending on
the time ordering (20 > 23 of 2¥ < 29) the electron absorbs at z; the photon that was
emitted by the same electron at z, or vice versa. Hence the electron interacts with its
own electromagnetic field and this diagram describes selfinteraction. It is clear that the
electron does not get scattered in this diagram (its energy momentum vector is conserved).
This self-energy diagram produces among other things an electromagnetic contribution to
the mass of the electron. This is so called mass renormalisation.

Also the charge of the electron gets renormalised by quantum corrections. Consider the

following order e* diagram for electron-electron scatteringdiagram :

T Yy

zZ2

2 . (2.124)

m/ y/
The extra photon propagator produces a vertex correction:
Z
z o= oo (2.125)

z

Because the vertex factor is —iey, [ d*z3 , the vertex correction generates a renormalisation
of the elementary electron-photon interaction and hence also of the electron charge.
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By continuous deformation, we can redraw the previous diagram as
x )

22 ‘ Z4 . (2.126)

/ /
This is topologically the same Feynn?an diagram which hence still represents the same
process. Let us now cut loose , the electron propagators that arrive at z (from z3) and
at z; (from z’) at their endpoints, switch them (exchange), and stitch them back on. We
then obtain the following diagram:

T Y

2 7 (2.127)

3:, /

We now see that the electrons exchange a virtual photon between z, and z4 which contains
a self-energy correction:

z Z
2y A~ e 2 (2.128)

This is a second example of a self-energy diagram and gauge invariance ensures that this
self-energy does not renormalise the mass of the photon (it stays massles). Because the
diagram was obtained from the previous one by exchange, there is an extra minus sign
involved. This is an example of the general Feynman rule that every electron loop costs a
minus sign.

2.7 Feynman rules in momentum space

The Feynman rules in momentum space can be obtained by calculating the S-matrixele-
ments for electron-electron and Compton scattering in lowest order. For electron-electron
scattering we must according to the master formula(??) first amputate the external electron
propagators and replace them with the initial and final wavefunctions of the electrons:

h f2
Zl}v\NV\'»{Zz — exchange . (2.129)
1 19
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If we choose free electron states with good momentum and helicity, then this becomes:

Phy s P, 8
Z1>-V\AW~{Z2 — exchange . (2.130)
b1, st P2, 52

Applying the Feynman rules in configuration space to the amputated two-electron propa-
gator and making use of (2.72), we find for the S-matrixelement in order e*:

[ [ @t By ) (i i () 8 1 = 2205, 2) 67 2
— (P, s} <> ph, 55)
B \/(QW)?’E(M) \/(277)3]—*7(]?1) \/(QW)SE(plz) \/(27)3]—*7(1?2)
X @ () (—ieytYust (py) a2 (ph) (—iey” Yu2 (ps)
X /d4zl/d421 ! Pr=p1) 216iPy—p zQzAFW( —z9) . (2.131)

Using the Fourier representation of the photon propagator (2.105), then we find for the
integration over z; and 2s:

d4k W ] —/[:g
d* dt s, el P1—P1—k) - 21 i(Py—patk) - 22 p
/ (27T)4/ Zl/ = ‘ k2 + e
(

=)' [ @ 5]~ — O — o+ 1) 2

k2 +ic
— (27)*6W (py + P — (po + "YW (2,132
(2m) (py + 1) — (P2 p1))(p,1 ) +is ( )

The integration over z; took care of energy-momentum conservation in the first vertex
en analogously the one over z, took care of energy-momentum conservation in the second
vertex. After integration over the virtual photon momentum, it gets replaced by p| — p;.
The whole expression is proportional to 6 ((py+p}) — (p2+p1)) which ensures conservation
of total energy-momentum in the reaction. In the diagram, we can now drop the coordinates
of the vertexpoints z; and z, because we integrated over them and replace the photon
momentum by p| — p;. We then obtain the Feynman diagram in momentum space:

/ ! / !
P1, 51 Do, So

; - (plla 5,1 A pl2> S/2> : (2133)
b1 —P

b1, 81 D2, S2
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The corresponding Feynman amplitude is

4 (4) / m 81
(2m)* 6" ((ph + p1) — (P2 + p1) 2 PEG " (p1)

\/7
g ((p’ —zg,w+ ze) \/7 —ieY") Mmusg(m)

—ie")

We can do now the same thing for Compton scattering. We amputate the external
propagators for electrons as well as for photons and replace them with initial and final
wavefunctions:

fi fa p/1 3/1 K p

21 21
_ _ (2.135)

) )

1 19 P1 51 kv

The initial and final wavefunctions for a photon with momentum £ en polarisation A,
respectively k' and X, are:

[ _ v ekl a
M) = e (2.136)
I _ 1 e—ik’ T *x 010
Af(:I:) = —(27T)32w(k’) \ (k’) . (2.136Db)

Because a photon is its own anti-particle (the photon field A* is real), we have only solutions
with positive energy ky = w(k) as incoming and outgoing wavefunctions. Furthermore,
the polarisation of real photons is transversal so that A = 1,2. By amputation of the
amplitude in configuration space (2.135) and substitution of the wavefunctions, we find for
the S-matrixelement to order e?:

1 m 1 m
V2m)32w(k) \ (2m)3E(P)) \/(27)32w(k) V| (2m)3E(p1)
- / d'z / d'zy WP B (Kt (p)) (—ie)
IS (21 — 20)(—iey, )u (pr)es (k)e " FHP) = - (2.137)

To carry out the integrations over z; and zy , we use the Fourier representation (2.102) for
the electron propagator S%(zl — 25). The integrations over z; and z; again ensure conser-
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vation of energy-momentum in the vertices, so that the Feynman diagram now becomes:

L
P s B X
21
p1+k (2.138)
)
b1 51 v
kA
with corresponding amplitude:
1 m
2 W ((ph + k) — (p1 + k) ————————ex e’ (k) , | ————
( ) ((pl ) (pl )) (27’(’)320&(!{3,) A ( ) (27T)3E(p/1)

x w* (p)) (—ie,) <@ o (flk;? 7_;2m_ ie) (—ieyy)u™ (p1)

Lg/(k); (
(2m)*E(pr) V@2m)32w(k)

From these two examples we can now distill the Feynman rules in momentum space for
a general nth-order diagram:

2.139)

1. Draw all topologically inequivalent diagrams with n vertices that connect the external
lines (initial- and final states) through the vertices and the internal lines (free photon-
and electron propagators) together to a connected diagram.

2. Do for every vertex the substitution

>vvv\- o= —ieyt . (2.140a)

Do for every internal electron line the substitution

p+m
— . ™ (2.140D)
P p2+m? —ie

and for every internal photon line the substitution

(2.140¢)
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3. Do for the external lines the substitutions :

m
—incoming electron: D, = | —=—=—u’(p 2.140d
V (27)°E(p) ) ( :

—final electron: p,s — Wﬂs (p') (2.140e)
—incoming positron: —p,sy — mw(})) (2.140f)
—final positron: -p,s'y — mvsl (p') (2.140g)

1
—incoming photon: kX — )2 () el (k) (2.140h)

i
I

1

_ﬁnal phOtODZ k/, )\/ — WGK,*(IC/) (21401)

4. If there are V vertices and I internal lines, there are V' Dirac-delta functions that ex-
press conservation of energy-momentum in every vertex. By integrating over the mo-
menta of the internal lines, V' — 1 internal momenta can be eliminated in terms of the
external momenta and L = I —V 41 independent internal momenta will remain.These
are the so called loop momenta because using the Euler theorem from graph theory
one can show that there are as many independent internal momenta to be integrated
over as ther are independent loops in the diagram. Every loop integration comes
with a factor 1/(27)%. The final remaining Dirac-delta function ensures overall con-
servation of energy and momentum and gives a factor (27)*6® (> sPr—=22:pi) -

5. Finally we must still calculate the overall sign. This sign is the product of

a) a factor (—1) for every incoming positron (an incoming positron is a final ne-
fact 1) f i ing it i ing it is a final
gative energy electron that is scattered backward in time so that ¢y = —1 in

(77)),
(b) a factor (—1) for every closed electron loop,

(c) a factor (—1) for every exchange of external electrons or positrons.
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