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Free quantum fields

1.1 What is a quantum field? What is a particle?
Consider a system with many degrees of freedom such as a glass of water, a crystal or a
piece of string. If we are only interested in phenomena at a scale (space or time) much
larger then the typical atomic or microscopic scales involved (distance between atoms in
crystal or water, period of vibration of atom around equilibrum position etc ...) we can go
over to a continuous description in terms of fields. For a vibrating string this field is the
displacement field q(x, t) which obeys the wave equation

1

v2

∂2q

∂t2
− ∂2q

∂x2
= 0 (1.1)

with v the propagation velocity.
When this system, which we approximately describe at these large scales with con-

tinuum fields, has quantum mechanical behavior, we should replace the fields by quantum
fields (q(x, t) → q̂(x, t)) which obeys the same wave equation in the Heisenberg picture.
Now we can use the uncertainty principle to replace space-time scales with momentum-
energy scales:

∆x∆p ≥ ~
2

(1.2)

∆t∆E ≥ ~ . (1.3)

From this we see that large space and time scales correspond to small momentum and
energy scales. From this it follows that quantum field theorycan be used to describe the
quantum mechanical behavior of systems with many degrees of freedom at energies and
momenta much smaller then the typical “microscopic” energy and momentum scale. For
energies larger then some cutoff scale(close to the microscopic scale) thecontinuous descrip-
tion is not valed anymore and the original microscopic variables have to be reintroduced.

Quantumfield theory can also be used if one does not know the “microscopic “ theory.
Take for example Maxwell’s theory, Q.E.D. Here we only have the field theory, we have no
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fundamental “microscopic” theory for which the Maxwell theory is a low energetic approxi-
mation. At energies around 100 GeV this theory gets unified with weak interactions into
the standard model for electro-weak interactions, the Weinberg-Salam model which is itself
a low energetic field theoretic model of an even more fundamental theory which explains
the many parameters of the Standard Model and is still not known (string theory?).

Finally there is the question: what is a particle. Why is the particle concept so useful
and so omnipresent in modern physics? The answer is very general. Every system with
many degrees of freedom can be described at low energy by a quantum field theory. Because
of quantization, the low energy excitations of a quantum field theory behave as point
particles without internal structure. We will illustrate this with a well known example:
the vibrations in a crystal. But before we discuss the quantization of lattice vibrations,
we will introduce canonical quantization, which is simply quantization in the Heisenberg
picture.

1.2 Canonical quantization of a system with a finite
number of degrees of freedom.

Newton’s equations can be deduced from the principle of minimal action. For a system
with one degree of freedom we have the Lagrangean:

L =
1

2
mq̇2 − V (q) (1.4)

whereq can be the position of a particle and V (q) its potential energy. De action is:

S =

ˆ t2

t1

L(q, q̇)dt . (1.5)

We vary over all paths q(t) that start in q1 at t = t1 and end in q2 at t = t2.The classical
path is the one which minimizes the action:

δS = 0 (1.6)

or

δS =

ˆ t2

t1

dt

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)

=

ˆ t2

t1

dt

(
δq

[
∂L

∂q
− d

dt

∂L

∂q̇

]
+
d

dt

(
δq
∂L

∂q̇

))

=

ˆ t2

t1

dtδq

[
∂L

∂q
− d

dt

∂L

∂q̇

]
= 0 (1.7)

where we used partial integration and the boundary conditionsδq(t1) = δq(t2) = 0. Be-
cause the change in action for every variation δq has to be zero, we obtain the Euler-
Lagrangeequation:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (1.8)
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This is the Lagrangian formalism. For quantization however, it is more appropriate to
start from the Hamiltonian formalism. The Hamiltonian is defined as:

H(q, p) = pq̇ − L(q, q̇) (1.9)

where the canonically conjugate momentum p is defined as:

p =
∂L

∂q̇
. (1.10)

The transformation from the variablesq, q̇ to q, p is a so called Legendretransformation.
Because

δH = pδq̇ + δpq̇ − ∂L

∂q
δq − ∂L

∂q̇
δq̇

= q̇δp− ∂L

∂q
δq

=
∂H

∂q
δq +

∂H

∂p
δp (1.11)

we find the Hamiltonian equations:

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (1.12)

The total derivative with respect to time of a physcial quantity F (q, p) is:

dF

dt
=

∂F

∂t
+
∂F

∂q
q̇ +

∂F

∂p
ṗ

=
∂F

∂t
+
∂F

∂q

∂H

∂p
− ∂F

∂p

∂H

∂q

=
∂F

∂t
+ {H,F}PB (1.13)

where the Poisson bracket is defined as:

{A,B}PB =
∂A

∂p

∂B

∂q
− ∂A

∂q

∂B

∂p
. (1.14)

We can now go from classical to quantum mechanics by the replacement:

{A,B}PB →
i

~
[Â, B̂] . (1.15)

For canonically conjugate coordinates we find the canonical commutation relation:

[p̂, q̂] = −i~ (1.16)
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which can be realised in the configuration representation as:

p̂→ −i~ ∂
∂q

, q̂ → q . (1.17)

The Hamiltonian equations of motion then become the well known equations of motion in
the Heisnberg picture:

˙̂q =
i

~
[Ĥ, q̂] , ˙̂p =

i

~
[Ĥ, p̂] . (1.18)

This can be generalized to a system with N degrees of freedom. Let’s take N particles
with mass m connected by springs :

L =
N∑

i=1

Li

=
N∑

i=1

[
1

2
mq̇2

i −
1

2
κ(qi − qi+1)2

]
. (1.19)

The Euler-Lagrange equations
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1.20)

give
mq̈i = κ(qi−1 − 2qi + qi+1) . (1.21)

The Hamiltonian becomes:
H =

∑

i

piq̇i − Li (1.22)

with pi = ∂L/∂q̇i = mq̇i, and we can quantize through the canonical commutation relations:

[q̂i, q̂j] = [p̂i, p̂j] = 0 (1.23)
[p̂i, q̂j] = −i~δij . (1.24)

1.3 The linear crystal: classically.
Consider a linear crystal consisting of N atoms connected by elastic springs:

L =

N/2∑

i=−N/2

(m
2
q̇2
i −

κ

2
(qi − qi+1)2

)
. (1.25)

We impose periodic boundary conditions:

qN+1 = q1 (1.26)
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Figuur 1.1: (a) A linear crystal composed of point particles (b) The linear crystal with periodic
boundary conditions

(see figure1.1). The coordinate qi(t) describes the displacement of the i-th atom with
respect to the equilibrum lattice. We limit ourselves to small vibrations (low energy)
so that we can neglect anharmonic effects. The constant κ can be calculated from the
microscopic theory of the crystal or can be measured experimentally. The Euler-Lagrange
equation is

mq̈i = κ(qi−1 − 2qi + qi+1) . (1.27)

Let a be the lattice parameter so that:

qi(t) = q(ia, t) = q(x, t) (1.28)

In the limit a→ 0, N →∞ with L = Na fixed, we have:

qi−1 − 2qi + qi+1

a2
→ ∂2q

∂x2
(x, t) , (1.29)

and we recover the wave equation
(

1

v2

∂2

∂t2
− ∂2

∂x2

)
q(x, t) = 0 (1.30)

for the displacement field q(x, t) with

v =

√
a2κ

m
. (1.31)

The discrete equations (1.27) are coupled:

mq̈ = κAq (1.32)

where theqi have been put in aN -dimensional vector and A

A =




−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2



∼ a2 ∂

2

∂x2
(1.33)
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is a tridiagonal matrix.
These equations can be decoupled through the normal coordinates ck(t):

qi(t) =
∑

k

ck(t)u
k
i (1.34)

where the vectors {uk} form a basis which diagonalizes A. Because A ∼ a2∂2/∂x2 in the
continuum limit and the operator ∂2/∂x2 is diagonalized by the vectors uk = 1√

2π
eikx, we

propose as discrete version of the uk:

uki =
1√
N
eikai . (1.35)

Indeed:

(Auk)i =
1√
N

(eika(i−1) − 2eikai + eika(i+1))

=
1√
N
eikai(eika + e−ika − 2)

= 2(cos ka− 1)uki . (1.36)

Because the periodic boundary conditions have to be fulfilled we have:

k =
2π

Na
l (1.37)

with l a whole number so that
−N

2
< l ≤ N

2
. (1.38)

By introducing normal coordinates we have decomposed the displacementet q(t) in normal
modes. k is nothing else than the wave vector for plane waves. For low momenta (ka� π)
the eigenvalues of A are reduced to

2(cos ka− 1)→ −k2a2 (1.39)

what can be expected because in the continuum limit (low momenta) A ∼ a2∂2/∂x2.
One can easily check that (excercise) the normal modes are orthonormal:

〈k′|k〉 =
N∑

i=1

uk
′

i

∗
uki = δkk′ (1.40)

with 〈i|k〉 = uki the component of uk along the i-th basis vector (the position of the i-th
atom), and that they form an orthonormal basis of the N -dimensional configuration space
(de position space of N atoms along the x-axis:

∑

k

〈i′|k〉〈k|i〉 =
∑

k

uki′
∗
uki = δi′i (1.41)
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or the completeness relation: ∑

k

|k〉〈k| = 1N×N . (1.42)

Finally we thave that
uki
∗

= u−ki (1.43)

so that , because the displacements are real

c∗k(t) = c−k(t) . (1.44)

Projecting the equations of motion (1.27) on the k-th mode, we obtain:

c̈k(t) = −ω2
kck(t) (1.45)

with

ωk =

√
2κ

m
(1− cos ka) = 2

√
κ

m

∣∣∣∣sin
ka

2

∣∣∣∣ . (1.46)

In this way, we have reduced the problem of the linear crystal to N decoupled oscillators
with frequency ωk en wave vector k.

The general solution of (1.45) is

ck(t) = bke
−iωkt + b∗−ke

+iωkt (1.47)

so thatt
qi(t) =

∑

k

(
bke
−iωktuki + b∗ke

iωktuki
∗
)

(1.48)

where by the reality condition (1.44) is automatically fulfilled.
The dispersion relation (see figure 1.2)

ωk = 2

√
κ

m

∣∣∣∣sin
ka

2

∣∣∣∣ , −π
a
< k <

π

a
(1.49)

is reduced for low energy or momentume (ka→ 0) to

ωk =

√
a2κ

m
k = vk (1.50)

and theBrillouinzone −π
a
< k < π

a
to−∞ < k <∞.

1.4 Canonical quantization of the linear crystal.
To go from classical to quantum mechanics we replace the classical coordinates and mo-
menta by linear operators q̂i en p̂i with commutation relations:

[q̂i, q̂j] = 0 , [p̂i, p̂j] = 0 (1.51)
[q̂i, p̂j] = i~δij . (1.52)
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Figuur 1.2: The dispersion relation of an oscillating chain . The points denote punten discrete
values of k.

The quantum Hamiltonian is given by:

Ĥ =
N∑

i=1

1

2m
p̂2
i +

N∑

i=1

κ

2
(q̂i+1 − q̂i)2 . (1.53)

The expansion coefficients bk become linear operatorsb̂k ,complex conjugation becomes
Hermitean conjugation so that

q̂i(t) =
∑

k

(b̂k(t)u
k
i + b̂†k(t)u

k
i

∗
) (1.54)

and
p̂i(t) = m ˙̂qi(t) =

∑

k

(−imωk)(b̂k(t)uki − b̂†k(t)uki
∗
) (1.55)

with b̂k(t) = b̂ke
−iωk . From (1.54) and (1.55) it follows that

1

2

∑

i

(
q̂i(t) +

i

ωkm
p̂i(t)

)
uki
∗

= b̂k(t) (1.56)
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where we used the orthonormality relations of the basis vectors uik. The commutation
relations for the b̂’s are:

[b̂k, b̂
†
k′ ] =

1

4

∑

i,j

uki
∗
uk

′

j

[
q̂i +

i

ωkm
p̂i, q̂j −

i

ωk′m
p̂j

]

=
1

4

∑

i,j

uki
∗
uk

′

j

(
i

ωkm
[p̂i, q̂j]−

i

ωk′m
[q̂i, p̂j]

)

=
1

4

~
m

∑

i

uki
∗
uk

′

i

(
1

ωk
+

1

ωk′

)

=
~

2mωk
δkk′ (1.57)

and
[b̂k, b̂k′ ] = 0 , [b̂†k, b̂

†
k′ ] = 0 . (1.58)

To streamline the formulas we go over to dimensionless operators âk, defined by

âk =

√
2mωk
~

b̂k (1.59)

so that the mode expansions become:

q̂i(t) =
∑

k

√
~

2mωk
(âk(t)u

k
i + â†k(t)u

k
i

∗
) (1.60)

p̂i(t) = −i
∑

k

√
~mωk

2
(âk(t)u

k
i − â†k(t)uki

∗
) (1.61)

and the commutation relations:

[âk, âk′ ] = 0 , [â†k, â
†
k′ ] = 0 (1.62)

[âk, â
†
k′ ] = δkk′ . (1.63)

The physical interpretation of the operators âk en â†k is straightforward. Because âk(t) =
e−iωktâk, we have in the Heisenberg picture:

i~
d

dt
âk(t) = [âk(t), Ĥ] = ~ωkâk′ (1.64)

and hence
[Ĥ, âk] = −~ωkâk . (1.65)

If |ψ〉 is an eigenstate of Ĥ met energie E, then ak|ψ〉 is an eigenstate of Ĥ with energy
E − ~ωk. Indeed:

Ĥâk|ψ〉 = [Ĥ, âk]|ψ〉+ âkĤ|ψ〉
= (E − ~ωk)âk|ψ〉 . (1.66)
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The operator âk destroys a quantum with energy ~ωk. Therefor we call âk an annihilation
operator for a quantum with wave vector k . Analogously

[Ĥ, â†k] = ~ωkâ†k (1.67)

and â†k is a so called creation operator for a quantum of the mode with wave vector k.
From the theory of the harmonic oscillator we know that the Hamiltonion can be written
as:

Ĥ =
∑

k

~ωk
(
â†kâk +

1

2

)
. (1.68)

Indeed, from the commutation relations follow (1.65) and (1.67). This also follows by
careful calculation using the Hamiltonian (1.53), the expansions (1.54) and (1.55) and the
orthonormality relations for the basis vectors uk.

The groundstate |Θ〉 of our crystal contains no quanta and hence is annihilated by all
âk:

âk|Θ〉 = 0 (1.69)

with |Θ〉 =
∏

k |Θk〉, where |Θk〉 is the groundstate of the k-th mode. Excited states can
be obtained by applying the creators â†k :

|n〉 = |n1, n2, · · · 〉 =
∏

k

|nk〉 (1.70)

with for every mode:

|nk〉 =
1√
nk!

(a†k)
nk |Θk〉 . (1.71)

Introducing the number operator n̂k = â†kâk which counts the number of quanta with
energy ~ωk , we have

Ĥ =
∑

k

~ωk
(
n̂k +

1

2

)
. (1.72)

The interpretation of (1.72) is now very simple. Every mode contributes ~ωk/2 (zero
point energy) and for nk quanta nk~ωk to the total energy of the system . These quanta of
vibration are well known in condensed matter physics and are called phonons. In realistic
crystals with at least two atoms per unit cell, there are two types of phonons : optical
and acoustic phonons . The phonons which we discuss here are acoustic and low energy
or long wave length phonons generate sound in crystals.With a phonon with wave vector
k we can associate a crystal momentum p = ~k which behaves as a real momentum and
is conserved in phonon scattering or phonon creation modulo a vector of the reciprocal
lattice. (This is so because continuous translational symmetry is broken to the discrete
translational symmetry of the lattice ) These phonons have a bosonic character.This is a
direct consequence of the commutation relations. Suppose we have two phonons with wave
vector k1 en k2 described by

|k1, k2〉 = â†k1 â
†
k2
|Θ〉 . (1.73)
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Because [â†k, â
†
k′ ] = 0, we have

|k1, k2〉 = |k2, k1〉 (1.74)

so that these quanta behave as bosons.

1.5 Canonical quantization in the continuum limit.
In the first paragraph, we have defined quantum field theory as the quantum mechanics
of a system with very many degrees of freedom in the low energy limit. The low energy
excitations behave as point particles. Let us illustrate this now in the case of the linear
crystal. The dispersion relation for the mode with wave number k is:

ωk = 2

√
κ

m

∣∣∣∣sin
ka

2

∣∣∣∣ , −π
a
< k ≤ π

a

∼ v|k| , |k| � π

a
. (1.75)

If we introduce the crystal momentum p = ~k , then the excitation energy of the k-th
mode:

Ep = ~ωk = v~|k|
= v|p| . (1.76)

Here v is the propagation velocity of sound in the crystal.
At low energy, only acoustic phonons and hence sound waves can be used to exchange

messages or energy. Thus, v plays the role of the “velocity of light”. If we interpret this
analogy literally, then we can rewrite (??) as:

Ep = c|p| . (1.77)

Now, the Einstein relation between energy and momentum of a particle with restmassm0is:

Ep =
√
m2

0c
4 + c2p2 , (1.78)

so that we can say that low energy excitations of the crystal (acoustic phonons) behave
as point particles with zero mass.. Since at low energy there are only low energy acoustic
phonons in a crystal we can say that the low energy physics of a crystal is equivalent to a
massless scalar field theory.

We can show this equivalence also in another way. Let’s look at the crystal with low
spacial and temporal resolution. Then the image of the crystal lattice is blurred and the
lattice can be viewed as an elastic continuum. We get the same image by letting the lattice
parameter a go to zero so that the length of the crystal L = Na remains constant or
N ∼ 1/a → ∞. Mathematically this means that we go over from lattice sums to space
integrals:

a
∑

i

fi =
∑

i

af(ia)→
ˆ L/2

−L/2
f(x)dx . (1.79)
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The Kronecker-delta becomes a Dirac -deltafunction at low resolution:

a
∑

i

f(ia)
1

a
δij = f(ja)

−−→
a→0

ˆ L/2

−L/2
f(x)δ(x− y)dx = f(y) , (1.80)

so that
δij
a
→ δ(x− y) . (1.81)

We can now rewrite the completenesss relations for the basis vectors uk as:

δij
a

=
1

a

∑

k

ukj
∗
uki =

1

Na

π/a∑

k=−π/a

eika(i−j) . (1.82)

Because
k =

2π

Na
l =

2π

L
l , −N

2
< l ≤ N

2
(1.83)

and taking besides the limit a → 0 also the limit L → 0 (infinitely long crystal), the
k-spectrum becomes continuous and the distance between to adjacent k-values

∆k =
2π

Na
=

2π

L
−−−→
L→∞

dk (1.84)

becomes the differential dk. (1.82) can be rewritten in the limit a→ 0, L→∞ as

δ(x− y) = lim
a→0
L→∞

1

2π

π/a∑

k=−π/a

∆k eika(i−j)

=
1

2π

ˆ +∞

−∞
dk eik(x−y) , (1.85)

what turns out to be the well known expression for the Dirac-deltafunction as a Fourier
integral.

Let us turn back now to the linear crystal, then the Lagrangian becomes in de limit
a→ 0, L→∞:

L = a




N/2∑

i=−N/2

m

a
q̇2
i − aκ

(
qi − qi+1

a

)2



=
a→0
L→∞

ˆ +∞

−∞
dx

1

2

[
ρ

(
∂q

∂t
(x, t)

)2

− Y
(
∂q

∂x
(x, t)

)2
]

(1.86)
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whereρ = m/a is the mass density per unit of length , Y = κa the Young modulus and
q(x, t) = qi(t) with x = ia. If we rescale the field q as

φ =
√
Y q , (1.87)

then it follows from

v =

√
a2κ

m
=

√
Y

ρ
(1.88)

that

L =

ˆ +∞

−∞
dx

1

2

[
1

v2

(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]
. (1.89)

In the low energy limit or continuum limit we can write the Lagrangian of our linear crystal
as the “volume”-integral of the Lagrangian density L with

L =
1

2

[
1

v2

(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]
. (1.90)

Introducing the “relativistic” notation:

∂µ =

(
1

v

∂

∂t
,
∂

∂x

)
, (1.91)

then this Lagrangian density is a Lorentz scalar:

L =
1

2
∂µφ∂

µφ . (1.92)

The action defined as

S =

ˆ t2

t1

dt L , (1.93)

can be rewritten as the integral over two dimensional space time continuum:

S =

ˆ t2

t1

dt

ˆ +∞

−∞
dx L(φ, ∂µφ)

=
1

v

¨
d2x L(φ, ∂µφ) (1.94)

with x0 = vt.
The Lagrangian density (1.92) is the one of a massless scalar Klein–Gordon field. So

we recover the idea that the low energy excitations of a crystal are massless particles. The
Lorentz invariance we find here is an example of a dynamical symmetry. This symmetry
is dynamically realised at low energy and is no fundamental symmetry of the crystal La-
grangian. An important lesson to be learned from this example is that maybe the Lorentz
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Invariance of our fundamental laws of physics can be dynamically realised and that the
microscopic theory of our world at high energy maybe has no Lorentz Invariance.

We now try to construct a continuum version (low energy limit) of the Hamiltonian
formalism for the linear crystal. From the commutation relations

[qi(t), pj(t)] = m[qi(t), q̇j(t)] = i~δij (1.95)

with
pi =

∂L

∂q̇i
(1.96)

it follows because ofvφ =
√
Y q, ρ = m/a and Y = κa that:

i~
δij
a

=
ρ

Y
[φ(ia, t), φ̇(ja, t)] , (1.97)

or in the limit a→ 0:
i~δ(x− y) = [φ(x, t), π(y, t)] (1.98)

with
π(x, t) =

1

v2
φ̇(x, t) . (1.99)

The field π(x, t) is called the canonically conjugate field. Indeed, from the expression for
the Lagrangian density (1.90) follows

π(x, t) =
∂L

∂φ̇(x, t)
=

1

v2
φ̇(x, t) , (1.100)

which is precisely the continuum version of the discrete

pi =
∂L

∂q̇i
. (1.101)

The canonical commutation relation (1.98) is nothing else then the continuum version of

[qi, pj] = i~δij . (1.102)

The Hamiltonian

H =

N/2∑

i=−N/2

(piq̇i − Li) (1.103)

can be rewritten in the limit a→ 0, L→∞ in the continuum form:

H =

ˆ +∞

−∞
dx H(φ, π) (1.104)

with H(φ, π) the Hamiltonian density defined by

H = πφ̇− L . (1.105)
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We can also tale the continuum limit for the commutation relations of creation and
annihilation operators and L→∞. Precisely as

δij
a

=
δij
∆x
−−→
a→0

δ(x− y) (1.106)

we have
δkk′

∆k
−−−→
L→∞

δ(k − k′) . (1.107)

Definining the creation and annihilation operators in the a→ 0, L→∞ limit as

a(k) =
ak

(∆k)1/2
, a†(k) =

a†k
(∆k)1/2

, (1.108)

we find:
[a(k), a†(k′)] =

a→0
L→∞

δ(k − k′) . (1.109)

and
[a(k), a(k′)] = [a†(k), a†(k′)] = 0 . (1.110)

Coming back to the mode expansion (1.60) of q̂i(t):

q̂i(t) =
∑

k

√
~

2mωk
(âk(t)u

k
i + â†k(t)u

k
i

∗
)

= ∆k
∑

k

√
~

2mωk

(
âk(t)

∆k

1√
N
eikia + h.c.

)
. (1.111)

and multiplying these equations with
√
Y and using m = ρa, we obtain

φ̂(ia, t) =
∑

k

∆k√
2π

√
~Y

2ωkρ

(
âk(t)

∆k

√
2π

Na
eikia + h.c.

)
, (1.112)

In the limit a→ 0, taking into account that ∆k = 2π/Na = 2π/L we find:

φ̂(x, t) =
∑

k

∆k√
2π

√
~v2

2ωk

(
âk(t)

(∆k)1/2
eikx + h.c.

)
. (1.113)

If we finally take the limitL→∞, then ∆k → dk and we obtain

φ̂(x, t) =

ˆ +∞

−∞

dk

(2π)1/2

√
~v2

2ωk
(â(k, t)eikx + h.c.) . (1.114)

We find an analogous expansion for π̂ fromπ = 1
v2
φ̇:

π̂(x, t) =
1

v2
(−i)

ˆ +∞

−∞

dk

(2π)1/2

√
~v2

2ωk
(â(k, t)eikx − h.c.) . (1.115)
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What we learned from the continuum limit of the linear crystal can be generalised to
an arbitrary Lorentz invariant scalar quantum field theory (with or without microsocpic
description) in D spacetime dimensions ( D-1 space dimensions and one time dimension).We
define the action as an integral over the hypervolume Ω of spacetime of the Lagrangian
densityL(φ, ∂µφ)

S =

ˆ
Ω

dDx L(φ, ∂µφ) . (1.116)

The continuum version of the Euler-Lagrange equations is obtained by extremising S over
φ where we keepφconstant on the boundary ∂Ω of spacetime (generalisation of δqi(t1) =
δqi(t2) = 0):

δS =

ˆ
Ω

dDx

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ∂µφ

)

=

ˆ
Ω

dDx

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ+

ˆ
Ω

dDx ∂µ

(
∂L

∂(∂µφ)
δφ

)
. (1.117)

Making use of the theorem of Gauss we find:
ˆ

Ω

dDx ∂µ

(
∂L

∂(∂µφ)
δφ

)
=

ˆ
∂Ω

dSµ
∂L

∂(∂µφ)
δφ = 0 , (1.118)

because the variation of the field on the hypersurface ∂Ω which is the boudary of the
spacetime volumeΩis zero. Putting the variation of the action equal to zero for all variations
δφ, we find the Euler-Lagrange equations

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 . (1.119)

Using the Lagrangian density of the linear crystal (1.92) we find

∂L
∂(∂µφ)

= ∂µφ ,
∂L
∂φ

= 0 , (1.120)

so that the Euler Lagrange equations become:

∂µ∂
µφ = �φ =

(
1

v2

∂2

∂t2
− ∂2

∂x2

)
φ = 0 . (1.121)

The Hamiltonian obviously becomes

H =

ˆ
dD−1x H (1.122)

with
H = πφ̇− L (1.123)
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and
π =

∂L
∂φ̇

. (1.124)

Finally, the canonical commutation relations are:

[φ(~x, t), φ(~y, t)] = [π(~x, t), π(~y, t)] = 0 (1.125a)
[φ(~x, t), π(~y, t)] = i~δD−1(~x− ~y) . (1.125b)

1.6 Canonical quantisaton of the Klein–Gordonfield.
If one wants to combine the principle of relativity with the postulates of quantum me-
chanics one naturally arrives at relativistic quantum field theory. The relativistic demand
of finite propagation velocity of interactions can be simply realised in a Lorentz invariant
local field theory where a local perturbation of the field can only influence the immediate
neighbourhood and propagates with finite velocity. Starting from now, we will mainly
study quantum field theory for its own sake without asking questions about the underlying
microscopic theory. We will frequently work in units where waar ~ = 1 en c = 1. These
units are a standard choice in elementary particle physics and are called natural units. The
real Klein–Gordonveld ϕ describes an uncharged scalar (spin 0) free particle with mass m
and satisfies the field equation

(� +m2)ϕ = 0 (1.126)

with� = ∂2/∂t2−∇2 the d’Alembertian. The Klein–Gordon equation can be derived from
the Lagrangian

L =
1

2
(∂µϕ)2 − m2

2
ϕ2 . (1.127)

The canonically conjugate field is:

π(~x, t) =
∂L

∂ϕ̇(~x, t)
= ϕ̇(~x, t) (1.128)

The energy and momentum carried by this field are conserved quantities as follows from
the Noether theorem.

Noether’sTheorem for translations and energy momentum conservation
Let’s consider a translation over a constant four vector aµ

xµ → xµ + aµ , (1.129)

then the field ϕ transforms as:

ϕ(x)→ ϕ(x+ a) = ϕ(x) + δϕ(x) (1.130)

with
δϕ(x) = aµ∂µϕ(x) . (1.131)
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The change of the Lagrangian which is only dependent on ϕ en ∂µϕ and hence not expli-
citely dependent on space and time is given by:

δL = aµ∂µL =
∂L
∂ϕ

δϕ+
∂L
∂∂µϕ

δ∂µϕ . (1.132)

Because
δ∂µϕ = ∂µδϕ = aν∂µ∂νϕ (1.133)

and the Euler-Lagrange equation (1.119), (1.132) becomes:

δL = aµ∂µL = ∂µ
(

∂L
∂∂µϕ

)
aν∂νϕ+

∂L
∂∂µϕ

aν∂µ∂νϕ

= aν∂µ
(

∂L
∂∂µϕ

∂νϕ

)
(1.134)

or
aν∂µTµν = 0 (1.135)

with
Tµν = −gµνL+

∂L
∂∂µϕ

∂νϕ . (1.136)

For arbitrary constant aν we obtain the conservation law

∂µTµν = 0 . (1.137)

Therefore, with every translational degree of freedom ν corresponds a conserved current

Jµν = Tµν . (1.138)

Integrating this conservation law over a volume V with surface S, we obtain

∂0

ˆ
V

d3x T0ν −
ˆ
V

d3x ∇iTiν = 0 . (1.139)

Using Gauss’s theorem: ˆ
V

d3x ∇iTiν =

˛
S

dSi Tiν (1.140)

we can rewrite (1.139) as
d

dt

ˆ
V

d3x T0ν =

˛
S

dSi Tiν . (1.141)

If we takeν = j = 1, 2, 3 and define Pj as the total momentum in the j-th direction
containedin the volume V , then the formula

Pj =

ˆ
V

d3x T0j ⇒
d

dt
Pj =

˛
S

dSi Tij (1.142)
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states that the amount of j-momentum that escapes from the volume V per unit of time
equals the amount of j-momentum that flows through the surface S . The tensor Tij can
thus be interpreted as the current Jij of j-momentum along the i-th direction. If we take
an infinite volume and assume that the fields die off fast enough at infinity, then the right
hand side of (1.142) is zero, and we obtain conservation of momentum in the j-direction:

d

dt
Pj = 0 . (1.143)

We can repeat the same forν = 0 with

P0 =

ˆ
d3x T00 = E (1.144)

and then (1.141) for an infinite volume gives us the law of conservation of energy. From
Noether’s theorem it follows that we can define the conserved energy momentum four
vector as

P µ =

ˆ
d3x T 0µ (1.145)

and the corresponding conserved currents are given by the energy momentum tensor Tµν
defined in (1.136).

To find the enenergy and momentum of the Klein–Gordonveld we use (1.136) and
(1.127)

T 00 =

(
∂ϕ

∂t

)2

− L

=
1

2

(
∂ϕ

∂t

)2

+
1

2
(~∇ϕ)2 +

m2

2
ϕ2

=
1

2
π2 +

1

2
(~∇ϕ)2 +

m2

2
ϕ2 (1.146)

and
T 0i = −∂ϕ

∂t
∇iϕ = −π∇iϕ , (1.147)

so that the energy or Hamiltonian is given by:

H =

ˆ
d3x

1

2

(
π2 + (~∇ϕ)2 +m2ϕ2

)
(1.148)

and the momentum ~P by
~P = −

ˆ
d3x π~∇ϕ . (1.149)

To quantize the Klein–Gordon field, we promote the canonically conjugate fields ϕ(~x, t) en
π(~x, t) to quantum field operators which in natural units obey:

[ϕ(~x, t), ϕ(~y, t)] = [π(~x, t), π(~y, t)] = 0 (1.150a)
[ϕ(~x, t), π(~y, t)] = iδ(~x− ~y) . (1.150b)
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Our next task is to diagonalize the Hamiltonian. By transforming to momentum space

ϕ(~x, t) =

ˆ
d3k

(2π)3/2
ei
~k · ~xϕ̃(~k, t) (1.151)

(withϕ̃†(~k) = ϕ̃(−~k) so that ϕ is real) the Klein–Gordon equation becomes:
[
∂2

∂t2
+
(
|~k|2 +m2

)]
ϕ̃(~k, t) = 0 . (1.152)

This is the same equation as a harmonic oscillator with

ω(~k) =

√
|~k|2 +m2 . (1.153)

The Hamiltonian of the harmonic oscillator

HH.O. =
p2

2
+
ω2

2
q2 (1.154)

can be diagonalised by introducing annihilation and creation operators

q =
1√
2ω

(a+ a†) , p = (−i)
√
ω

2
(a− a†) . (1.155)

One can easily check that the commutation relation [q, p] = i is equivalent to

[a, a†] = 1 . (1.156)

The Hamiltonian can now be written as

HH.O. = ω

(
a†a+

1

2

)
. (1.157)

The groundstate |0〉 defined by a|0〉 = 0 is an eigenstate of H with eigenvalue ω/2, the
zero point energy. From the commutators:

[HH.O., a
†] = ωa† , [HH.O., a] = −ωa (1.158)

it easily follows that
|n〉 = (a†)n|0〉 (1.159)

are eigenstates of HH.O. with eigenvalue (n+ 1
2
)ω. These states form the spectrum.

We can determine the spectrum of the Klein–Gordon-Hamiltonian by using the same
trick for every Fourier mode ϕ̃(~k, t) which can be viewed as an independent oscillator
with creation and annihilation operators a†(~k) en a(~k). At t = 0, where Schrödinger and
Heisenberg picture coincide, we have :

ϕ(~x) =

ˆ
d3k

(2π)3/2

1√
2ω(k)

(
a(~k)ei

~k · ~x + a†(~k)e−i
~k · ~x) (1.160a)

π(~x) =

ˆ
d3k

(2π)3/2
(−i)

√
ω(k)

2

(
a(~k)ei

~k · ~x − a†(~k)e−i
~k · ~x) . (1.160b)
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These are generalisations of the Fouriermode-expansies (1.114) and (1.115) for the linear
crystal to D = 3 in units ~ = v = 1. For calculations, it is advantageous to rewrite the
preceding expressions as

ϕ(~x) =

ˆ
d3k

(2π)3/2

1√
2ω(k)

(
a(~k) + a†(−~k)

)
ei
~k · ~x (1.161a)

π(~x) =

ˆ
d3k

(2π)3/2
(−i)

√
ω(k)

2

(
a(~k)− a†(−~k)

)
ei
~k · ~x . (1.161b)

As generalisation of the commutation relation (1.156) we postulate:

[a(~k), a(~k′)] = [a†(~k), a†(~k′)] = 0 (1.162a)

[a(~k), a†(~k′)] = δ(~k − ~k′) (1.162b)

from which the correct commutation relations (1.150) follow (at t = 0):

[ϕ(~x), π(~y)] =

ˆ
d3kd3k′

(2π)3

−i
2

√
ω(k′)

ω(k)

(
[a†(−~k), a(~k′)]− [a(~k), a†(−~k′)]

)
ei(

~k · ~x+~k′ · ~y)

= iδ(~x− ~y) (1.163)

and where we used
δ(~x− ~y) =

ˆ
d3k

(2π)3
ei
~k · (~x−~y) . (1.164)

Analogously, we find for the Hamiltonian(1.148)

H =

ˆ
d3x

ˆ
d3kd3k′

(2π)3
ei(

~k+~k′) · ~x
[
−
√
ω(k)ω(k′)

4

(
a(~k)− a†(−~k)

)(
a(~k′)− a†(−~k′)

)

+
−~k ·~k′ +m2

4
√
ω(k)ω(k′)

(
a(~k) + a†(−~k)

)(
a(~k′) + a†(−~k′)

)]

=

ˆ
d3k

ω(k)

2

[
a†(~k)a(~k) + a(~k)a†(~k)

]

=

ˆ
d3k ω(k)

(
a†(~k)a(~k) +

δ(~0)

2

)
. (1.165)

From the preceding form of the Hamiltonian, we see that a Klein–Gordon field theory
is equivalent to an infinite set of harmonic oscillators labeled by the wavevector ~k and with

angular frequency ω(k) =

√
|~k|2 +m2. The quanta carry energyω(k) (~ = c = 1) and are

created or annihilated by a†(~k) en a(~k). Indeed, from the commutation relations (1.162) it
follows that

[H, a†(~k)] = ω(k)a†(~k) (1.166a)
[H, a(~k)] = −ω(k)a(~k) . (1.166b)
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The groundstate |0〉 is annihilated by all annihilators: a(~k)|0〉 = 0, ∀~k. All the other energy
eigenstates can be obtained by applying creation operators to the groundstate:

|~k1, ~k2, · · · , ~kn〉 = a†(~k1)a†(~k2) · · · a†(~kn)|0〉 . (1.167)

The second term in the expression (??) for the Hamiltonian is an infinite constant
which represents the sum of the zero point energies of all oscillators. Indeed, if we restrict
space to a finite cube with side L and impose periodic boundary conditions, then the wave
vectors ~k are given by

~k =
2π

L
(n1, n2, n3) , ni ∈ Z . (1.168)

From this, it follows that we can replace the integrals in k-space by sums over discrete
modes: ˆ

d3k → (2π)3

V

∑

~k

(1.169)

and the Dirac-delta function can be replaced by a Kronecker-delta:

δ(~k − ~k′)→
(

1

2π

)3 ˆ
V

d3xei(
~k−~k′) · ~x =

V

(2π)3
δ~k,~k′ (1.170)

from which
δ(~0) =

V

(2π)3
. (1.171)

Using (1.169) and (1.171) we finaly arrive at
ˆ
d3k

ω(k)

2
δ(~0)→

∑

~k

1

2
ω(k) . (1.172)

The groundstate has infinite energy but this infinite energy is not measurable because only
energy differences are physically observable. We can therefore drop this infinite vacuum
energy and this is an example of renormalisation which is ubiquitous in quantum field
theory.

To prove that the quanta of the Klein–Gordon field are particles with mass m, we
must show that the Einstein relation between energy and momentum is satisfied. From
Noether’s theorem we obtain the momentum as

~P = −
ˆ
d3x π~∇ϕ . (1.173)

By substitution of (1.161) we find using an analogous calculation as for the energy:

~P =

ˆ
d3k ~ka†(~k)a(~k) . (1.174)
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Hence a quantum created bya†(~k) carries momentum ~k. The relation between energy and
momentum of a Klein–Gordon quantum is therefore

E(k) = ω(k) =

√
|~k|2 +m2 (1.175)

which is nothing else than the Einstein relation in units ~ = c = 1. From this we can
conclude that the quanta of the Klein–Gordon field are particles with mass m. Because
the Klein–Gordonfield is a scalar field, these particles have spin 0.

Let’s consider a state of two particles with momentum~k1 en ~k2:

|~k1, ~k2〉 = a†(~k2)a†(~k1)|0〉 (1.176)

Because of (1.162) the creation operators of Klein–Gordon particles commute and we have

|~k1, ~k2〉 = |~k2, ~k1〉 . (1.177)

The particles of the Klein–Gordon field are therefore bosons.

1.7 Canonical kwantisation of the charged Klein–Gordonfield
A charged Klein–Gordonveld is a complex scalar field:

φ =
1√
2

(φ1 + iφ2) (1.178)

that fulfills the Klein–Gordon equation. The Lagrangian is:

L = ∂µφ∂
µφ† −m2φφ†

=
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 −
m2

2
(φ2

1 + φ2
2) (1.179)

which is the sum of the Lagrangians of two uncharged (real) fields φ1 and φ2. Because φ, or
φ1 and φ2,are solutions of the Klein–Gordon equation, we have the Fourier representation

φi =

ˆ
d3k√
(2π)3

1√
2ωk

(ai(~k)e−ik ·x + a†i (
~k)eik ·x) , i = 1, 2 . (1.180)

Let’s define

a(~k) =
1√
2

[a1(~k) + ia2(~k)] , a†(~k) =
1√
2
, [a†1(~k)− ia†2(~k)] , (1.181a)

b(~k) =
1√
2

[a1(~k)− ia2(~k)] , b†(~k) =
1√
2

[a†1(~k) + ia†2(~k)] . (1.181b)
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From the canonical quantisation of uncharged fields in the previous section, we find the
canonical commutation relations for the ai en a†i which we use to obtain the commutation
relations for a en b:

[a(~k), a†(~k′)] = δ(~k − ~k′) , [b(~k), b†(~k′)] = δ(~k − ~k′) , (1.182a)

[a(~k), a(~k′)] = [b(~k), b(~k′)] = [a(~k), b(~k′)] = 0 , (1.182b)

[a†(~k), a†(~k′)] = [b†(~k), b†(~k′)] = [a†(k), b†(~k′)] = 0 . (1.182c)

These commutation relations also follow from the canonical formalism for the φ-veld. Be-
cause of (1.178) and (1.180) we have the Fourier representation:

φ =

ˆ
d3k√

(2π)32ωk
[a(~k)e−ik ·x + b†(k)eik ·x] (1.183)

From(1.178) it follows that:

Πφ(~x, t) =
∂L

∂φ̇(~x, t)
= φ̇†(~x, t) , (1.184a)

Πφ†(~x, t) =
∂L

∂φ̇†(~x, t)
= φ̇(~x, t) . (1.184b)

The canonical commutation relations are therefore

[φ(~x, t), φ(~y, t)] = [φ†(~x, t), φ†(~y, t)] = 0 , (1.185a)
[φ(~x, t), φ†(~y, t)] = 0 (1.185b)

and

[φ(~x, t)],Πφ(~y, t)] = [φ(~x, t), φ̇†(~y, t)] = iδ3(~x− ~y) , (1.185c)

[φ†(~x, t),Πφ†(~y, t)] = [φ†(~x, t), φ̇(~y, t)] = iδ3(~x− ~y) . (1.185d)

From(1.185) and the Fourier representation (1.183) we also obtain the commutation rela-
tions (1.182).

Noether’s theorem for U(1) transformations and charge conservation
The Lagrangian (1.178) is invariant under the global U(1)-transformations:

φ → eieχφ , (1.186a)
φ† → e−ieχφ (1.186b)

or infinitesimally

δφ = ieχφ , (1.187a)
δφ† = −ieχφ† . (1.187b)
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This means that the variation of the Lagrangian vanishes is under (1.187) or

δL = 0 =
∂L
∂φ

δφ+
∂L
∂∂µφ

δ∂µφ

+
∂L
∂φ†

δφ† +
∂L

∂∂µφ†
δ∂µφ† . (1.188)

From

δ∂µφ = ieχ∂µφ (1.189a)
δ∂µφ† = −ieχ∂µφ† (1.189b)

and the Euler-Lagrange equations

∂L
∂φ

− ∂µ
∂L
∂∂µφ

= 0 (1.190a)

∂L
∂φ†

− ∂µ
∂L

∂∂µφ†
= 0 (1.190b)

it follows that

ieχ

[
∂µ

∂L
∂∂µφ

φ+
∂L
∂∂µφ

∂µφ− ∂µ ∂L
∂∂µφ†

φ† − ∂L
∂∂µφ†

∂µφ†
]

= 0 , (1.191)

or after deviding by −χ:
∂µjµ = 0 (1.192)

with

jµ = ie

[
∂L

∂∂µφ†
φ† − ∂L

∂∂µφ
φ

]
. (1.193)

Using the charged Klein–Gordon Lagrangian, we finally obtain

jµ = ie[∂µφφ
† − ∂µφ†φ] . (1.194)

From Noether’s theorem we find a conserved current for the global U(1)-symmetry given
by (1.194). The corresponding charge is

Q =

ˆ
d3x j0 = ie

ˆ
d3x[φ̇φ† − φ̇†φ] . (1.195)

After substition of the Fourierr epresentation (1.183) we find for the charge:

Q = e

ˆ
d3k[a†(~k)a(~k)− b†(~k)b(~k)] . (1.196)

Therefore, the a†(~k) create particles with charge e and the b†(~k) antiparticles with charge
−e.
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1.8 Non-relativistic quantum field theory.
Assume we have a classical scalar field ψ(~x, t) which obeys the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V (~x)ψ (1.197)

and which we want to quantize. The wavefunction ψ can be viewed as a classical field.
If we quantize this classical field, this is sometimes called “second quantization”. The
classical equation (1.197) describes the quantum behaviour of one particle. We will show
that quantizing the Schrödinger field ψ turns the one particle quantum theory into a many
body theory.

To quantize the Schrödinger field we will as usual go over to the Hamiltonian formalism.
It is easy to check that the Schrödinger equation can be derived from the Lagrangian density

L = i~ψ∗
∂ψ

∂t
− ~2

2m
~∇ψ∗ · ~∇ψ − V (~x)ψ∗ψ . (1.198)

Indeed, variation with respect to ψ∗ yields

∂µ
∂L
∂µψ∗

− ∂L
∂ψ∗

= ∂t
∂L
∂ψ̇∗
− ~∇ · ∂L

∂(~∇ψ∗)
− ∂L
∂ψ∗

= i~
∂ψ

∂t
+

~2

2m
∇2ψ − V (~x)ψ = 0 . (1.199)

The canonically conjugate momentum forψ is

π =
∂L
∂ψ̇

= i~ψ∗ . (1.200)

The Hamiltonian density then becomes

H = πψ̇ − L =
~2

2m
~∇ψ∗ · ~∇ψ + V (~x)ψ∗ψ , (1.201)

so that we find after partial integration:

H =

ˆ
d3x H =

ˆ
d3x ψ∗(~x)

(
− ~2

2m
∇2 + V (~x)

)
ψ(~x) . (1.202)

We can quantize by imposing the canonical commutation relations:

[ψ̂(~x, t), π̂(~y, t)] = i~δ(~x− ~y) (1.203a)

[ψ̂(~x, t), ψ̂(~y, t)] = [π̂(~x, t), π̂(~y, t)] = 0 . (1.203b)

Because of (1.200) these become

[ψ̂(~x, t), ψ̂†(~y, t)] = δ(~x− ~y) (1.204a)

[ψ̂(~x, t), ψ̂(~y, t)] = [ψ̂†(~x, t), ψ̂†(~y, t)] = 0 . (1.204b)

26



We now develop the wave operators ψ̂ en ψ̂† in normal modes which are solutions of the
time independent Schrödinger equation:

ψ̂(~x, t) =
∑

i

âi(t)ui(~x) (1.205)

with [
− ~2

2m
∆ + V (~x)

]
ui(~x) = εiui(~x) . (1.206)

From the orthonormality conditions and the completness relation
ˆ
d3x u∗i (~x)uj(~x) = δij (1.207a)

∑

i

ui(~x)u∗i (~x
′) = δ(~x− ~x′) (1.207b)

it easily follows that the commutation relations are obeyed if

[âi, âj] = [â†i , â
†
j] = 0 (1.208a)

[âi, â
†
j] = δij . (1.208b)

Substituting the normal mode expansion (1.205) into the Hamiltonian (1.202), we finally
obtain:

Ĥ =
∑

i

â†i âiεi (1.209)

or
Ĥ =

∑

i

n̂iεi (1.210)

with n̂i = â†i âi, the number operator which counts the number of particles in the i-the
eigenstate.

The interpretation of the previous paragraph is straightforward. Second quantization
allows us to describe non-relativistic many body systems with a variable number of parti-
cles. These particles are moving in an external potential V (~x) and the number of particles
that are in the i-th energy eigenstate of the one particle Hamiltonian is counted by n̂i.The
formula (1.210) for the Hamiltonian Ĥ is then self explanatory.

Let’s take as a special case V (~x) = 0, then we have a continuous spectrum

ε(~k) =
~2

2m
k2 (1.211)

with eigenmodes

u(~k, ~x) =
1

(2π)3/2
ei
~k · ~x . (1.212)

27



The mode expansion then becomes

ψ̂(~x, t) =

ˆ
d3k

(2π)3/2
â(~k, t)ei

~k · ~x . (1.213)

The operator â(~k, t) annihilates a non-relativistic particle with momentum ~p = ~~k. Because
we can go over with a Fourier transform from momentum space to configuration space
(position space), it follows from (1.213) that ψ̂(~x, t) annihilates a particle on postion ~x,
while ψ̂†(~x, t) creates a particle on position ~x. Non-relativistic quantum field operators are
hence annihilation or creation operators in configuration space.

Because of the commutation relations (1.204) , the particles described by ψ̂ and ψ̂†are
bosons. If we want to describe non-relativistic fermions, it suffices to impose anticommuta-
tion relations:

{âi, âj}+ = {â†i , â†i}+ = 0 (1.214a)

{âi, â†j}+ = δij (1.214b)

with {Â, B̂}+ = ÂB̂ + B̂Â. Indeed let

|i1, i2〉 = â†i1 â
†
i2
|Θ〉 (1.215)

with âi|Θ〉 = 0, ∀i, then from{â†i , â†j} = 0 it follows that

|i1, i2〉 = â†i1 â
†
i2
|Θ〉

= −â†i2 â
†
i1
|Θ〉 = −|i2, i1〉 . (1.216)

Consequently these particles behave as fermions. Also the interpretation of âi and â†i as
annihilation and creation operators remains valid. Indeed:

[Ĥ, âi] =

[∑

j

â†j âjεj, âi

]

=
∑

j

εj(â
†
j âj âi − âiâ†j âj)

=
∑

j

εj(â
†
j{âj, âi}+ − â†j âiâj − {âi, â†j}+âj + â†j âiâj)

= −εiâi , (1.217)

so that âi annihilates a particle in the i-th mode . Furthermore, from

{â†i , â†i}+ = 0 = 2(â†i )
2 (1.218)

we recover that not more then one particle can be in the i-th mode.
If we substitute the anticommutation relations of âi en â†i in the mode expansions, we

finally obtain the canonical anticommutation relations for the fermionic field operators:

{ψ̂(~x, t), ψ̂(~y, t)}+ = {ψ̂†(~x, t), ψ̂†(~y, t)}+ = 0 (1.219a)

{ψ̂(~x, t), ψ̂†(~y, t)}+ = δ(~x− ~y) . (1.219b)
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1.9 Canonical quantization of the Dirac field.
Electrons have spin 1/2 and obey Fermi statistics; consequently, for the quantization of
relativistic electrons described by the Dirac equation, we will have to impose canonical
anticommutation relations on the canonically conjugate fields.

The Dirac equation for a relativistic particle with spin 1/2 is:

i~
∂ψ

∂t
=

~c
i

(
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
ψ + βmc2ψ (1.220)

with ψ a wavefunction with four components ψα (Dirac spinor) and αi and β hermitian
4× 4-matrices which obey anticommutation relations:

{αi, αj} = 2δij1 (1.221a)
{αi, β} = 0 (1.221b)
α2
i = β2 = 1 . (1.221c)

In the Dirac representation we have:

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
. (1.222)

Introducing the relativistic notation

γi = βαi , γ0 = β (1.223)

and choosing natural units ~ = c = 1, the Dirac equation becomes after multiplication
with β:

iγµ∂µψ −mψ = 0 . (1.224)

The matrices γµ are the so called Dirac matrices and because of (2.140) and (2.142) they
obey the anticommutation relations:

{γµ, γν} = 2gµν1 . (1.225)

In the Dirac representation th γ-matrices are given by:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi
−σi 0

)
. (1.226)

Introducing the notation /a = γµaµ , we obtain a compact form of the Dirac equation:

(i/∂ −m)ψ = 0 . (1.227)

Under a Lorentz transformation
x′µ = Λµ

νx
ν (1.228)
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the Dirac wavefunction transforms as

ψ(x)→ ψ′(x′) = D(Λ)ψ(x) . (1.229)

The Dirac equation (1.224) is invariant under the Lorentz transformation (1.228), (1.229)
if

D(Λ)γµD(Λ)−1Λν
µ = γν . (1.230)

From this it follows that
D(Λ) = exp− i

4
σµνωµν (1.231)

with
σµν =

i

2
[γµ, γν ] (1.232)

the generators of the Lorentz group.
Because (γ0)2 = 1 and the Dirac matrices anticommute for µ 6= ν, we have

γ0 = γ0γ0γ0 (1.233a)
−γi = γ0γiγ0 . (1.233b)

On the other hand, from the Hermiticity of αi en β it follows that

(γ0)† = β† = β = γ0 (1.234a)
(γi)† = (βαi)

† = αiβ = −βαi = −γi , (1.234b)

so that
(γµ)† = γ0γµγ0 . (1.235)

From (1.232) we immediately get that σ†µν = −γ0σµνγ0, and hence:

D(Λ)† = γ0D(Λ)−1γ0 . (1.236)

If we define the conjugate spinor ψ as

ψ = ψ†γ0 , (1.237)

then it follows from (1.230) and (1.236) that

Jµ = ψγµψ (1.238a)
S = ψψ (1.238b)

respectively form a Lorentz fourvector and a Lorentz scalar vormen. Furhtermore, from
the Dirac equation, it follows that

∂µ(ψγµψ) = 0 , (1.239)

so that ψγµψ is the conserved probability current and ψγ0ψ = ψ†ψ the probability density.
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One can easily check that the Dirac equation (1.224) is invariant under parity transfor-
mations ~x→ −~x, t→ t, if

ψ → Pψ = γ0ψ . (1.240)

The matrix γ5 defined by
γ5 = iγ0γ1γ2γ3 (1.241)

anticommutes with all Diracmatrices γµ:

{γµ, γ5} = 0 . (1.242)

From this we find that {γ5, P} = [γ5,D(Λ)] = 0 so that

Aµ = ψγµγ5ψ (1.243a)
P = ψγ5ψ (1.243b)

are respectively an axial Lorentz fourvector and a pseudoscalar. We can now form a Lorentz
invariant which is a function of ψ and ψ† and which after variation with respect to ψ gives
the Dirac equation (1.227) :

L = ψ(i/∂ −m)ψ . (1.244)

The Dirac equation has plane wave solutions with positive and negative energy:

ψ(+),s = e−ip ·xus(p) = e−iE(p)tei~p · ~xus(p) (1.245a)
ψ(−),s = eip ·xvs(p) = eiE(p)te−i~p · ~xvs(p) (1.245b)

with s = ±1 the helicity and E(p) =
√
|~p|2 +m2. After substitution in the Dirac equation

(1.227) we obtain the equation for the plane wave spinors

(/p−m)us(p) = 0 (1.246a)
(/p+m)vs(p) = 0 . (1.246b)

In the rest frame where pµ = (m,~0), we have/p = Eγ0 = mγ0, so that (1.246) simplifies to

γ0u = u (1.247a)
γ0v = −v . (1.247b)

In the Dirac representation, (1.247) has the general solutions

u =
(ϕ

0

)
, v =

(
0

χ

)
(1.248)

with ϕ and χ arbitrary two-component spinors. In the Dirac representation, in the rest
frame, the first two components of a Dirac spinor describe the positive energy part and
the last two the negative energy part. As basis for ϕ and χ we can choose the helicity
eigenspinors ϕs, s = ±1, which obey

~σ · ~p
|~p| ϕ

s = sϕs . (1.249)
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Using the identity
(/p−m)(/p+m) = p2 −m2 = 0 (1.250)

the plane wave spinors u en v are given in an arbitrary frame by

us(p) =
/p+m√

2m(E +m)
us (1.251a)

vs(p) =
−/p+m√

2m(E +m)
vs (1.251b)

with
us =

(
ϕs

0

)
, vs =

(
0

ϕ−s

)
. (1.252)

Because us and vs fulfill usus′ = δss′ , vsvs
′

= −δss′ , uv = 0, and because ψψ is a Lorentz
scalar, us(p) and vs(p) are normalised as

us(p)us
′
(p) = δss′ , us(p)vs

′
(p) = 0 (1.253a)

vs(p)vs
′
(p) = −δss′ , vs(p)us

′
(p) = 0 (1.253b)

or

u†s(p)us(p) =
E(p)

m
δss′ (1.254a)

v†s(p)vs(p) =
E(p)

m
δss′ . (1.254b)

The probability densities transform as the fourth component of a Lorentz fourvector, as
was to be expected.

In the rest frame, the projectors on postive and negative energy are given by

Λ+ =
1 + γ0

2
=
p0γ0 +m

2m
=
/p+m

2m
(1.255a)

Λ− =
1− γ0

2
=
−p0γ0 +m

2m
=
−/p+m

2m
. (1.255b)

In an arbitrary frame we obtain because of (1.253) the following Lorentz invariant expres-
sions for these projectors:

Λ+(p) =
∑

s

us(p)us(p) =
/p+m

2m
(1.256a)

Λ−(p) = −
∑

s

vs(p)vs(p) =
−/p+m

2m
. (1.256b)

The Lorentz invariant Lagrangian (1.244) for the Dirac field can be rewritten as

L = ψ(iγµ∂µ −m)ψ = iψ†ψ̇ + iψ†~α · ~∇ψ −mψ†βψ (1.257)
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where we used β = γ0, β2 = 1, ~α = γ0~γ en ψ = ψ†ψ0. Because ψ and ψ† are independent
fields, we have

∂L
∂ψ̇α

= iψ†α ,
∂L
∂ψ̇†α

= 0 , (1.258)

and hence:
πψα =

∂L
∂ψ̇α

= iψ†α , πψ†
α

=
∂L
∂ψ̇†α

= 0 . (1.259)

The Hamiltonian density is defined in the usual way:

H = πψαψ̇α + πψ†
α
ψ̇†α − L

= iψ†ψ̇ − (iψ†ψ̇ + iψ†~α · ~∇ψ −mψ†βψ)

= ψ†(−i~α · ~∇+ βm)ψ . (1.260)

The field Hamiltonian is thus given by the expectation value of the one particle Dirac
HamiltonianHD = ~α · ~p+ βm:

H =

ˆ
d3x ψ†(−i~α · ~∇+ βm)ψ . (1.261)

The canonical anticommutation relations are now because of πψ = iψ†:

{ψα(~x, t), ψβ(~y, t)}+ = {ψ†α(~x, t), ψ†β(~y, t)}+ (1.262a)

{ψα(~x, t), ψ†β(~y, t)}+ = δαβδ
3(~x− ~y) . (1.262b)

In analogy to the complex Klein–Gordon field, we propose the following mode expansion
in plane waves :

ψ(~x, t) =
∑

s

ˆ
d3p

(2π)3/2

√
m

E(p)

(
a(~p, s)us(~p)ei~p · ~x−iE(p)t + b†(~p, s)vs(~p)ei~p · ~x+iE(p)t

)
.

(1.263)
Here a(~p, s) is an annihilation operator for the Dirac particles with momentum ~p and
helicity s while b†(~p, s) creates a Dirac-antiparticle with momentum ~p and helicity s. The
latter can be seen from the fact that v(~p, s) is a plane wave spinor with momentum −~p,
helicity −s and energy −E(p) and we can interpret b†(~p, s) = d(−~p,−s) as an annihilator
of a particle with negative energy, momentum and helicity −~p and −s, and hence as the
creator of a particle with positive energy and momentum and helicity ~p and s. By using
(1.254) one can easily show that the anticommutation relations in configuration space ,
when transformed to momentum space become

{a(p, s), a(p′, s′)} = {b(p, s), b(p′, s′)} = 0 (1.264a)
{a†(p, s), a†(p′, s′)} = {b†(p, s), b†(p′, s′)} = 0 (1.264b)

{a(p, s), a†(p′, s′)} = {b(p, s), b†(p′, s ′)} = δs,s′δ(~p− ~p ′) (1.264c)
{a, b} = {a, b†} = {a†, b} = {a†, b†} = 0 . (1.264d)
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The Hamiltonian (1.261) becomes after substitution of the mode expansion (1.263):

H =
∑

s

ˆ
d3p E(p)

[
a†(~p, s)a(p, s)− b(~p, s)b†(~p, s)

]

=
∑

s

ˆ
d3p E(p)

[
a†(~p, s)a(~p, s) + b†(~p, s)b(~p, s)

]

−
∑

s

ˆ
d3p E(p)δ(~0) . (1.265)

Analogously, we find for the momentum operator ~P , which is the “expectation value” for
the field ψ of the momentum operator ~̂P = −i~∇:

~P =

ˆ
d3x ψ†(−i~∇)ψ =

∑

s

ˆ
d3p ~p[a†(~p, s)a(~p, s) + b†(~p, s)b(~p, s)] . (1.266)

The quanta of the Dirac field therefore obey the Einstein relation between energy and
momentum and hence are relativistic particles. Because of the spinor character of ψ , they
have spin 1/2 and because of the anticommutation relations, they are fermions:

a†(~p1, s1)a†(~p2, s2)|Θ〉 = |~p1, s1; ~p2, s2〉 (1.267)

and
|~p1, s1; ~p2, s2〉 = −|~p2, s2; ~p1, s1〉 . (1.268)

Just as the charged Klein–Gordon field, the Dirac field has a global U(1)-symmetrie:

ψ → eieχψ (1.269a)
ψ† → e−ieχψ† (1.269b)

with conserved Noether current (exercise):

jµ = eψγµψ (1.270)

which is the electric current density fourvector. The corresponding conserved charge is the
electric charge

Q = e

ˆ
d3x ψ†ψ

= e
∑

s

ˆ
d3p[a†(~p, s)a(~p, s) + b(~p, s)b†(~p, s)]

= e
∑

s

ˆ
d3p[a†(~p, s)a(~p, s)− b†(~p, s)b(~p, s)] + e

∑

s

ˆ
d3p δ(0) . (1.271)

From this, it follows that the Dirac antiparticle created by b† has opposite charge. The
best known Dirac particle is the electron with as antiparticle the positron .
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1.10 Canonical quantisation of the Maxwell field.
The Maxwell equations with source term are:

~∇ · ~E = ρ , ~∇ · ~B = 0 , (1.272a)

~∇× ~B =
∂

∂t
~E +~j , ~∇× ~E = − ∂

∂t
~B (1.272b)

. If we introduce the fourvector potential Aµ with

~E = −~∇A0 −
∂

∂t
~A , ~B = ~∇× ~A (1.273)

they can be rewritten in a manifestly Lorentz covariant way as

∂µF
µν = jν (1.274)

with
F µν = ∂µAν − ∂νAµ (1.275)

the electromagnetic tensor. Because F µν is antisymmetric we have

∂ν∂µF
µν = ∂νj

ν = 0 (1.276)

so that the current jν is conserved. The Maxwell equations can be obtained by variation
of the Lagrangian

L = LMax + Lint (1.277)

where the free Maxwell Lagrangian is given by

LMax = −1

4
F µνFµν (1.278)

and the interaction Lagrangian by

Lint = −jµAµ . (1.279)

Because F µν is invariant under the gauge transformation

Aµ → Aµ + ∂µχ (1.280)

or

A0 → A0 +
∂

∂t
χ

~A → ~A− ~∇χ (1.281)

the Maxwell equations themselves are invariant under these gauge transformations. This
means that the time evolution of the fields Aµ is not fully determined by the equations
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of motion and there will be difficulties when trying to apply the canonical quantisation
formalism.

Indeed: let’s calculate the canonically conjugate fields of Aµ = (A0, ~A):

πµ =
∂L

∂∂0Aµ
= F µ0 (1.282)

or
π0 = 0 , πi = Ei . (1.283)

The canonically conjugate field of the vector potential ~A is the electric field ~E, but the
canonically conjugate field of the potential A0 is identically zero. So we cannot quantize the
A0 field by simply imposing canonical commutation relations because ([A0(~x), π0(~y)] = 0).

Fermi found an elegant solution to this problem by using the gauge invariance in a
clever way. The Maxwell equations (1.272) determine Aµonly up to gauge transformations
Aµ → Aµ+∂µχ . We still have the freedom to choose a gauge condition such as the Lorentz
gauge

∂µA
µ = 0 . (1.284)

It is always possible to bring the field Aµ in this gauge. Indeed , the gauge transformed
field Aµ′

Aµ′ = Aµ − ∂µ
(

1

�
∂νA

ν

)
(1.285)

fulfills the Lorentz gauge. We can now choose a new Lagrangian for the Maxwell field that
is equivalent to the original one in the Lorentz gauge:

L′Max = −1

4
FµνF

µν − 1

2
λ(∂νA

ν)2 (1.286)

where λ is a gauge parameter that can be freely chosen. The extra term in L′ is called the
gauge fixing term. The Euler-Lagrange equations are now:

∂µF
µν + λ∂ν(∂µA

µ) = 0 . (1.287)

If we take the covariant divergence of these field equations, we obtain

∂µ∂νF
µν + λ∂ν∂

ν(∂µA
µ) = 0 . (1.288)

Because of the antisymmetry of F µν we have ∂µ∂νF µν = 0, so that

�(∂µA
µ) = 0 . (1.289)

Therefore the field ∂µAµ is a free field. Imposing the initial conditions at t = 0:

∂µA
µ(~x, 0) = 0 (1.290a)

∂0∂µA
µ(~x, 0) = 0 (1.290b)
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, it follows from (1.289) that
∂µA

µ(~x, t) = 0 ∀t , (1.291)

so that the modified Euler-Lagrange equations (1.287) reduce to the usual free Maxwell
equations

∂µF
µν = 0 . (1.292)

Thus, we have found a new Lagrangian which, if we impose appropriate initial condi-
tions, generates the same solutions as the ones of the Maxwell equations in the Lorentz
gauge. For the special choice λ = 1, the Euler Lagrange equations (1.287) reduce to

0 = ∂µF
µν + ∂ν(∂µA

µ)

= ∂µ(∂µAν − ∂νAµ) + ∂ν∂µA
µ

= �Aν , (1.293)

so that the Maxwell field Aµ obeys the massless Klein–Gordon equations. These equations
are precisely the Maxwell equations in the Lorentz gauge. In this case we can rewrite the
Lagrangian as:

L′Max = −1

2
(∂µAν − ∂νAµ)∂µAν − 1

2
∂µA

µ∂νA
ν

= −1

2
∂µAν∂

µAν +
1

2
∂ν(Aµ∂

µAν − Aν∂µAµ) , (1.294)

so that by dropping the last term which is a total divergence we finally obtain:

L′′Max = −1

2
∂µAν∂

µAν

= −1

2
∂µA0∂

µA0 +
1

2
∂µAi∂

µAi . (1.295)

The Lagrangian for the spacial components Ai is the massless Klein–Gordon-Lagrangian;
for the time component A0 however there is an extra minus sign. But they all obey the
massless Klein–Gordon equation.

The canonically conjugate momentum of the Maxwell field Aµ is now:

πµ =
∂L′′Max

∂∂0Aµ
= −∂0Aµ . (1.296)

so that space and time components now behave in the same way. The Hamiltonian density
is

H = πµȦµ − L′′Max

= ∂0Aµ∂0Aµ −
1

2
∂0Aµ∂0Aµ +

1

2
~∇Aµ · ~∇Aµ

=
1

2
ȦµȦµ +

1

2
~∇Aµ · ~∇Aµ

=
1

2

3∑

i=1

(Ȧ2
i + (~∇Ai)2)− 1

2
(Ȧ2

0 + (~∇A0)2) . (1.297)
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The Hamiltonian density looks like the one of four uncharged massless Klein–Gordon fields
with this important difference that the part for A0 has a negative sign. At first view,
this Hamiltonian does not look positive definite and we expect some difficulties for the
physical interpretation. Furthermore we have four polarisations (three spacial ones and
one temporal) while we know that an electromagnetic wave has only two independent
polarisations. All these problems can now be solved by a quantum implementation of the
Lorentz gauge.

Canonical quantisation procedes in the usual way by imposing the canonical commuta-
tion relations

[Aµ(~x, t), Aν(~y, t)] = [πµ(~x, t), πν(~y, t)] = 0 (1.298a)
[Aµ(~x, t), πν(~y, t)] = igµνδ(~x− ~y) . (1.298b)

Because πµ = −∂0Aµ this last commutation relation becomes

[Aµ(~x, t), Ȧν(~y, t)] = −igµνδ(~x− ~y) . (1.299)

This commutation relation can be compared with the one for the uncharged Klein–Gordon
field

[ϕ(~x, t), ϕ̇(~y, t)] = iδ(~x− ~y) , (1.300)

From this we see that the spacial components Ai indeed obey normal commutation relations
while on the other hand the time component A0 obeys

[A0(~x, t), Ȧ0(~y, t)] = −iδ(~x− ~y) , (1.301)

which is a commutation relation with the wrong sign. Let us now consider the commutation
relation of ∂µAµ with Aν :

[∂µA
µ(~x, t), Aν(~y, t)] = [∂0A

0(~x, t) + ~∇ · ~A(~x, t), Aν(~y, t)]

= −[π0(~x, t), Aν(~y, t)] + ~∇ · [ ~A(~x, t), Aν(~y, t)]

= igν0δ(~x− ~y) 6= 0 . (1.302)

This means that we cannot impose the Lorentz gauge condition ∂µAµ = 0 as an operator
equation.

But let’s forget about these problems for the moment and just naively proceed with
canonical quantisation. Just as the Klein–Gordon and Dirac field, we will also expand the
Maxwell field Aµ in normal modes (plane waves):

Aµ(~x, t) =

ˆ
d3k

(2π)3/2

1√
2ω(k)

3∑

λ=0

[
aλ(~k)ελµ(~k)ei(

~k · ~x−ωt) + a†λ(
~k)ελµ(~k)e−i(

~k · ~x−ωt)] . (1.303)

Because �Aµ = 0 we have k2 = k · k = k2
0 − |~k|2 = 0, or:

ω(k) = |~k| (1.304)
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and we find the dispersion relation of a massles field. Because Aµ is a fourvector, we can
decompose for every~k the Fourier component of Aµ along four linearly independent basis
vectorsεµλ(~k) . We can choose the de z-axis parallel to ~k and define the independent vectors

ε0µ =




1
0
0
0


 , ε1µ =




0
1
0
0


 , ε2µ =




0
0
1
0


 , ε3µ =




0
0
0
1


 . (1.305)

The physical polarisations are λ = 1, 2 which are transversal (⊥ ~k). The polarisation
vectors are orthonormal

ελµε
λ′µ = gλλ

′
(1.306)

and form a basis of the real vector space of fourvectors obeying the completeness relation
∑

λ,λ′

gλλ′ε
λ
µε
λ′

ν = gµν . (1.307)

From the completeness relation and the Fourier representation (1.303) we find that the
commutation relations (1.299) and [Aµ, Aν ] = [Ȧµ, Ȧν ] = 0 are fulfilled if

[aλ(~k), a†λ′(
~k′)] = −gλλ′δ(~k − ~k′) (1.308a)

[aλ(~k), aλ′(~k
′)] = [a†λ(

~k), a†λ′(
~k′)] = 0 . (1.308b)

As usual, the vacuum obeys:
aλ(~k)|0〉 = 0 . (1.309)

A one photon state with momentum ~k and polarisationλ is

a†λ(
~k)|0〉 = |~k, λ〉 . (1.310)

These states are normalised as

〈~k′, λ′|~k, λ〉 = 〈0|aλ′(~k′)a†λ(~k)|0〉
= 〈0|[aλ′(~k′), a†λ(~k)]|0〉
= −gλλ′δ(~k − ~k′) . (1.311)

From this we conclude that the photons with scalar polarisation (λ = 0) are described by
states that have negative norm. This however is no problem because only the transversal
photons (λ = 1, 2) are physical and they do have a positive norm.

The problem is however that we must be sure that the unphysical polarisations (λ =
0, 3) do not contribute to physical quantities. Let us take the energy for example. By
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substitution of the Fourier expansion (1.303) in the Hamiltonian density (??) we find after
integration over space and using the orthonormality relations for the polarisation vectors:

H =

ˆ
d3x(πµȦµ − L)

=
1

2

ˆ
d3x

(
3∑

i=1

Ȧ2
i + (~∇Ai)2

)
− Ȧ2

0 − (~∇A0)2

=

ˆ
d3k ω(k)

[
3∑

λ=1

a†λ(
~k)aλ(~k)− a†0(~k)a0(~k)

]
+ E0 . (1.312)

We therefore have to take care that the scalar (λ = 0) and longitudinal (λ = 3, along ~k
) polarisations do not contribute to the energy. We can do this by at this stage imposing
the Lorentz gauge condition.

Because we cannot impose the gauge condition as an operator identity (this is in conflict
with the commutation relations) we will instead impose a condition to the physical state
vectors |Φ〉 such that the gauge condition is obeyed in the mean:

〈Φ|∂µAµ|Φ〉 = 0 . (1.313)

We can now split the field operator Aµ in a positive frequency part (annihilation part)
Aµ(+) and a negative frequency part Aµ(−) (creation part):

Aµ(x) = Aµ(+) + Aµ(−) . (1.314)

Let us now impose the following linear condition to the physical state vectors|Φ〉:

∂µA
µ(+)(~x, t)|Φ〉 = 0 . (1.315)

From this it follows by Hermitian conjugation that

〈Φ|∂µAµ(−)(~x, t) = 0 (1.316)

so that
〈Φ|∂µAµ|Φ〉 = 〈Φ|∂µAµ(+)|Φ〉+ 〈Φ|∂µAµ(−)|Φ〉 = 0 . (1.317)

The condition (1.315) has been proposed for the first time in 1950 by S. Gupta and
K. Bleuler and is called the Gupta-Bleuler condition. This way of quantising the Max-
well field is called Gupta-Bleuler quantisation. If we substitute the annihilation part of the
Fourier expansion of Aµ in (1.315), then the Gupta-Bleuler condition becomes

ˆ
d3k

(2π)3/2

1√
2ω(k)

e−ik ·x
3∑

λ=0

k · ελ(~k)aλ(~k)|Φ〉 = 0 . (1.318)
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Because the λ = 1, 2-polarisations are transversal (k · ελ(~k), λ = 1, 2) and k · ε0(~k) =

−k · ε3(~k), the Gupta-Bleuler condition (1.318) is fulfilled for all ~k if

(a0(~k)− a3(~k))|Φ〉 = 0 (1.319)

and hence also
〈Φ|(a†0(~k)− a†3(~k)) = 0 . (1.320)

From this it follows that

〈Φ|a†0(~k)a0(~k)|Φ〉 = 〈Φ|a†3(~k)a3(~k)|Φ〉 , (1.321)

so that a physical state which obeys the Lorentz gauge condition has as many longitudinal
(λ = 3) as scalar (λ = 0) photons. The expectation value of the Hamiltonian (??) for a
physical state|Φ〉 is then:

〈Φ|H|Φ〉 =

ˆ
d3k ω(k)

2∑

λ=1

〈Φ|a†λ(~k)aλ(~k)|Φ〉+

ˆ
d3k ω(k)〈Φa†3(~k)a3(~k)− a†0(~k)a0(~k)|Φ〉

=

ˆ
d3k ω(k)

2∑

λ=1

〈Φ|n(~k, λ)|Φ〉 (1.322)

with n(~k, λ) the number of photons with polarisation λ. The unphysical polarisations give
no contribution to the total energy. One can show that this is also true for other physical
(gauge invariant) quantities. The unphysical polarisation also do not contribute to the
norm of a physical state |Φ〉 because the scalar photons give as many negative contributions
as the longitudinal photons give positive ones so that they perfectly compensate each other
in the norm:

〈Φ|Φ〉 ≥ 0 . (1.323)

The physical states belong to a positive definite subspace of the total Hilbert space, defined
by the Gupta-Blueler condition. This is typical for the quantisation of massless particles of
spin 1 (photons, gauge bosons) and spin 2 (gravitons) if one wants to do it in a manifestly
covariant way. In this case one always needs a bigger Hilbert space which is not positive
definite and which one has to restrict by imposing a gauge condition on the states. For
the quantisation of non-abelian gauge bosons,for example, one not only has the unphysical
polarisations of the gauge bosons but on also has to introduce the so called Faddeev-popov
ghosts which are unphysical scalar particles which obey Fermi statistics and don’t obey the
spin statistics theorem. In this case one has to generalise the Gupta-Bleueler formalism.

41


