Quantenmechanik II

SS 2009 1. Aufgabenblatt

1. Sei

$$\psi(x) = (\text{const.})e^{-|x|/a}$$

die Wellenfunktion eines Teilchens in einer Dimension (a = Konstante > 0). Berechne:

- (i) Die Unschärfen $(\Delta x)_{\psi}$ und $(\Delta p)_{\psi}$.
- (ii) Die Wahrscheinlichkeit, das Teilchen im Intervall [-a,a] vorzufinden.
- (iii) Die Wahrscheinlichkeit, den Impuls im Intervall $\left[-\frac{\hbar}{a},\frac{\hbar}{a}\right]$ vorzufinden.
- 2. Für den Hamiltonoperator $H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$ auf der Halbgeraden \mathbf{R}_+ mit

$$V(x) = \begin{cases} -V_0 & \text{für } 0 < x \le x_0 \\ 0 & \text{für } x_0 < x \end{cases}$$

 $(V_0 \text{ ist eine Konstante} > 0)$ bestimme man den niedrigsten Energieeigenwert.

- (i) Für den Fall einer Dirichlet-Randbedingung bei x=0, d.h. $\psi(0)=0$.
- (ii) Für den Fall einer Neumann-Randbdingung bei x=0, d.h. $\psi'(0)=0.$
- **3.** Sei $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Berechne e^{itA} nach zwei Methoden:
 - (i) Durch die Reihe

$$e^{itA} = \sum_{n=0}^{\infty} \frac{(itA)^n}{n!}.$$

(ii) Schreibe $A = \sum_{k=1}^{2} \lambda_k |\psi_k\rangle \langle \psi_k|$ mit $\langle \psi_k |\psi_\ell\rangle = \delta_{k\ell}$ und benutze

$$e^{itA} = \sum_{k=1}^{2} e^{it\lambda_k} |\psi_k\rangle\langle\psi_k|.$$

4. Seien L_x , L_y , L_z die drei Komponenten des Drehimpulsoperators, berechne die Eigenwerte von

$$AL_z^2 + B(L_x^2 + L_y^2),$$

wo A,B Konstanten sind. (Hinweis: Benutze die aus QM I bekannten Resultate ueber die gemeinsamen Eigenvektoren von L_z und $\mathbf{L}^2=L_x^2+L_y^2+L_z^2$.)

5. Zeige, daß das Skalarprodukt $\langle \cdot, \cdot \rangle$ in einem Hilbertraum durch die Norm $\| \cdot \|$ eindeutig bestimmt ist, d.h. drücke $\langle \psi, \varphi \rangle$ als Linearkombination von Normen geeigneter Vektoren

aus.

[Hinweis: Es handelt sich hier um eine Verallgemeinerung der Identität $ab = \frac{1}{4}[(a+b)^2 - (a-b)^2]$ für reele Zahlen a,b.]

6. Sei H der Hamiltonoperator eines eindimensionalen harmonischen Oszillators mit Frequenz ω und $X(t)=e^{itH/\hbar}$ X $e^{-itH/\hbar}$, wo X der Ortsoperator ist. Berechne den Kommutator

$$[X(t_1), X(t_2)].$$

[Hinweis: Drücke X durch Erzeugungs- und Vernichtungsoperatoren a^* und a aus und berechne zunächst e^{itH} a e^{-itH} .]