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Chapter 1

Wave—Particle Duality

1.1 Planck’s Law of Black Body Radiation

1.1.1 Quantization of Energy

The foundation of quantum mechanics was laid in 1900 with Max Planck’s discovery of the
quantized nature of energy. When Planck developed his formula for black body radiation
he was forced to assume that the energy exchanged between a black body and its thermal
(electromagnetic) radiation is not a continuous quantity but needs to be restricted to
discrete values depending on the (angular-) frequency of the radiation. Planck’s formula
can explain — as we shall see — all features of the black body radiation and his finding is
phrased in the following way:

Proposition 1.1.1 Energy is quantized and given in units of hw. FE = hw

Here w denotes the angular frequency w = 27v. We will drop the prefix "angular”
in the following and only refer to it as the frequency. We will also bear in mind the
connection to the wavelength A given by ¢ = Av, where c is the speed of light, and to the
period T' given by v = %

The fact that the energy is proportional to the frequency, rather than to the intensity
of the wave — what we would expect from classical physics — is quite counterintuitive. The
proportionality constant A is called Planck’s constant:

h
h o= o = 1,054 x 1073 Js = 6,582 x 1071%eVs (1.1)
T

h = 6,626 x 1072*Js = 4,136 x 107 % eVs. (1.2)
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1.1.2 Black Body Radiation

A black body is by definition an object that completely absorbs all light (radiation) that
falls on it. This property makes a black body a perfect source of thermal radiation. A very
good realization of a black body is an oven with a small hole, see Fig. 1.1. All radiation
that enters through the opening has a very small probability of leaving through it again.

Figure 1.1: Scheme for realization of a black body as a cavity

Thus the radiation coming from the opening is just the thermal radiation, which will
be measured in dependence of its frequency and the oven temperature as shown in Fig. 1.2.
Such radiation sources are also referred to as (thermal) cavities.

The classical law that describes such thermal radiation is the Rayleigh-Jeans law which
expresses the energy density u(w) in terms of frequency w and temperature 7.

Theorem 1.1 (Rayleigh-Jeans law) u(w) = KL )2

23

where k denotes Boltzmann’s constant, k =1,38 x 10723 JK~!.

Boltzmann’s constant plays a role in classical thermo-statistics where (ideal) gases are
analyzed whereas here we describe radiation. The quantity &7 has the dimension of en-
ergy, e.g., in a classical system in thermal equilibrium, each degree of freedom (of motion)
has a mean energy of £ = %kT — Equipartition Theorem.

From the expression of Theorem 1.1 we immediately see that the integral of the energy
density over all possible frequencies is divergent,

/0 " u(w) — o0, (1.3)
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Figure 1.2: Spectrum of a black body for different temperatures, picture from:
http://commons.wikimedia .org/wiki/Image:BlackbodySpectrum lin_150dpi_en.png

which would imply an infinite amount of energy in the black body radiation. This is
known as the wltraviolet catastrophe and the law is therefore only valid for small frequen-
cies.

For high frequencies a law was found empirically by Wilhelm Wien in 1896.

Theorem 1.2 (Wien’s law) u(w) — AwPe™ BT for w0

where A and B are constants which we will specify later on.

As already mentioned Max Planck derived an impressive formula which interpolates!
between the Rayleigh-Jeans law and Wien’s law. For the derivation the correctness of
Proposition 1.1.1 was necessary, i.e., the energy can only occur in quanta of Aw. For this
achievement he was awarded the 1919 nobel prize in physics.

!See Fig. 1.3
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3
Theorem 1.3 (Planck’s law) u(w) = ng

From Planck’s law we arrive at the already well-known laws of Rayleigh-Jeans and
Wien by taking the limits for w — 0 or w — oo respectively:

for w—0 —  Rayleigh-Jeans

for w— o0 —  Wien

1e-23 p

Rayleigh-Jeans
—— Wien
le-24 |- Planck -~

18-25 |

1e-26 |

1e-27 |

Radiance [Jm’sT]

le-28 |

le-29 |

1630 A | . PP, |
1e+08 1e+09

Frequency [Hz]

Figure 1.3: Comparison of the radiation laws of Planck, Wien and Rayleigh-Jeans, picture
from: http://en.wikipedia.org/wiki/Image:RWP-comparison.svg

We also want to point out some of the consequences of Theorem 1.3.

e Wien’s displacement law: | \,..1 = const. = 0,29 cm K

e Stefan-Boltzmann law: for the radiative power we have

/Ooodwu(w) x T4/Omd(%)$ (1.4)

=



1.1. PLANCK’S LAW OF BLACK BODY RADIATION 5

substituting Z—; = x and using formula

00 3 4
/ de—2— = T (1.4)
0

et —1 15

we find the proportionality | oc T4

1.1.3 Derivation of Planck’s Law

Now we want to derive Planck’s law by considering a black body realized by a hollow
metal ball. We assume the metal to be composed of two energy-level atoms such that
they can emit or absorb photons with energy F = hw as sketched in Fig. 1.4.

L
>

5

Figure 1.4: Energy states in a two level atom, e... excited state, g... ground state. There
are three processes: absorption, stimulated emission and spontaneous emission of photons.

Further assuming thermal equilibrium, the number of atoms in ground and excited
states is determined by the (classical) Boltzmann distribution of statistical mechanics

Ne E (1.5)
N, = exp T ) .

where N/, is the number of excited/non-excited atoms and T is the thermodynamical
temperature of the system.

As Einstein first pointed out there are three processes: the absorption of photons,
the stimulated emission and the spontaneous emission of photons from the excited state
of the atom, see Fig. 1.4. The stimulated processes are proportional to the number of
photons whereas the spontaneous process is not, it is just proportional to the transition
rate. Furthermore, the coefficients of absorption and stimulated emission are assumed to
equal and proportional to the probability of spontaneous emission.

Now, in the thermal equilibrium the rates for emission and absorption of a photon
must be equal and thus we can conclude that:
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Absorption rate: Ny P P ... probability for transition
Emission rate: N.(m+1)P n ... average number of photons
=
n N, E hw
N,nP = N.(n+1)P = = 2L = =) = =
gt (m+1) i+l N, eXp( kT) eXp( kT)
providing the average number of photons in the cavern?
1
n = —0 , (1.6)
err — 1
and the average photon energy
hw
nhw = — : (1.7)
exrt — 1

Turning next to the energy density we need to consider the photons as standing waves
inside the hollow ball due to the periodic boundary conditions imposed on the system by
the cavern walls. We are interested in the number of possible modes of the electromagnetic

field inside an infinitesimal element dk, where k = 27” = ¢ is the wave number.

NN N TN
NN NS

Figure 1.5: Photon described as standing wave in a cavern of length L.

The number of knots N (wavelengths) of this standing wave is then given by

L L 27 L
A 2 A 2 (18)
which gives within an infinitesimal element

1-dim: dN = £dk 3-dim: dN = 2 Vv
27 (2m)3

where we inserted in 3 dimensions a factor 2 for the two (polarization) degrees of freedom of
the photon and wrote L? as V, the volume of the cell. Furthermore, inserting d*k = 4rk?dk
and using the relation k = # for the wave number we get

k (1.9)

V  drnw?dw

dN = 2 —_—
(2m)? 3

(1.10)

We will now calculate the energy density of the photons.

2Note that in our derivation P corresponds to the Einstein coefficient A and @ P to the Einstein
coefficient B in Quantum Optics.
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1. Classically: In the classical case we follow the equipartition theorem, telling us
that in thermal equilibrium each degree of freedom contributes £ = %k‘T to the
total energy of the system, though, as we shall encounter, it does not hold true for
quantum mechanical systems, especially for low temperatures.

Considering the standing wave as harmonic oscillator has the following mean energy:

E = (Ba) + (V) = (50%) + (T2a?) = Lervter - i
2 2 2 2

For the oscillator the mean kinetic and potential energy are equal®, (Ey,) = (V),

and both are proportional to quadratic variables which is the equipartition theorem’s

criterion for a degree of freedom to contribute %kT . We thus can write dE = kT'dN

and by taking equation (1.10) we calculate the (spectral) energy density

w) — LIE KT

—— — 1.12
V dw a3 (1.12)

which we recognize as Theorem 1.1, the Rayleigh-Jeans Law.

2. Quantum-mechanically: In the quantum case we use the average photon energy,
equation (1.7), we calculated above by using the quantization hypothesis, Proposi-
tion 1.1.1, to write dE' = mhw dN and again inserting equation (1.10) we calculate

1dFE h w3
_ ldE _ _ v 1.13
u(w) V dw w23 ke — 1 (1.13)

and we recover Theorem 1.3, Planck’s Law for black body radiation.

1.2 The Photoelectric Effect

1.2.1 Facts about the Photoelectric Effect

In 1887 Heinrich Hertz discovered a phenomenon, the photoelectric effect, that touches
the foundation of quantum mechanics. A metal surface emits electrons when illuminated
by ultraviolet light. The importance of this discovery lies within the inability of classical
physics to describe the effect in its full extent based on three observations.

1. ) The kinetic energy of the emitted electrons is independent of the intensity of the
illuminating source of light and

2. ) increases with increasing frequency of the light.

3. ) There exists a threshold frequency below which no electrons are emitted.

3This statement results from the so-called Virial theorem, stating that (2Fy,) = <x‘c%>, which we

will encounter later on in Section 2.7.
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More accurate measurements were made by Philipp Lenard between 1900 and 1902
for which he received the nobel prize in 1905.

In terms of classical physics this effect was not understood as from classical electro-
dynamics was known that the

energy density: U

( ) (1.14)
E (1.15)

UCJl

and the energy flux: S =

[0
O°|®34|H

are both proportional to the intensity. Thus “knocking” electrons out of the metal is pos-
sible, but there is no threshold that limits this process to certain frequencies. As long as
the surface is exposed to the radiation the electrons absorb energy until they get detached
from the metal.

1.2.2 Einstein’s Explanation for the Photoelectric Effect

The phenomenon of the photoelectric effect could then be explained by Albert Einstein
in 1905 with his photon hypothesis which he was also awarded the nobel prize for in 1921.

Proposition 1.2.1 (Photon hypothesis)
Light consists of quanta (photons) with respective enerqy of E = hw each.

Einstein explained the effect in the following way. The incident photons transfer
their energy to the electrons of the metal. Since the electrons are bound to the metal
the energy need to be sufficient to overcome the electrostatic barrier of the metal. The
respective energy, which is dependent on the material used is termed the work function
of the material.

2

Proposition 1.2.2 (Photoelectric formula) By = "5~ =hw—-W

where W is the work function of the metal. From Proposition 1.2.2 we understand that
the kinetic energy of the emitted electrons is bounded by the frequency of the incident
light such that Ey, o~ < Mwpnoton and we conclude that a threshold frequency wy must
exist where the emitted electrons are at rest Ey, .- = 0 after escaping the potential of
the metal.

w
R

Threshold frequency Wy =
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For frequencies w < wp no electrons are emitted and we have reflection or scattering of
the incident light together with electronic and/or thermal excitation instead. Einstein’s
explanation caused serious debates amongst the community and was not generally ac-
cepted due to conceptual difficulties to unify the quantized (particle) nature of light with
Maxwell’s equations, which stood on solid ground experimentally, suggesting a wave-like
behaviour of light. The experiment to change that point of view was performed by Robert
Andrews Millikan.

1.2.3 The Millikan Experiment

In 1916 R.A.Millikan developed an experimental setup (sketched in Fig. 1.6) which al-
lowed to check the accuracy of Einstein’s formula (Proposition 1.2.2). He was awarded
the Nobel prize for his work on the electron charge and the photoelectric effect in 1923.

A photocathode is irradiated with ultraviolet light which causes the emission of elec-
trons thus generating an electric current, between the cathode and the electron collector,
that is measured by a galvanometer. Additionally a voltage is installed such that the
electrons are hindered in advancing the collector. The electrons now need to raise en-
ergy, respective to the voltage U, to get to the collector and generate the current. So if
eU > FEyn no electrons arrive at the collector. If however the voltage is regulated to a
value Uy such that the current (as measured by the galvanometer) tends to zero, then Uy
is a measure for the kinetic energy. This allows us to measure the work function of the
metal at hand?.

collector

UV light \
.

photo-kathode

Galvanometer

Figure 1.6: Schematic overview of the Millikan experiment

eUy = Byin = hw — W — work function W (= 2—5 eV for typical metals)

Furthermore, the set up allows for a precise measurement of Planck’s constant as can
be seen in Fig. 1.7.

4assuming the collector and emitter are of the same material, otherwise an additional contact voltage

needs to be considered
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(a)

lhl q'yo

{eV).

Figure 1.7: Determination of Planck’s constant: a) Measuring the kinetic energy of the
electrons as a function of the incident radiation frequency, gives Planck’s constant as
the slope of the resulting linear function. b) Results are shown for different materials
displaying the workfunctions as the respective vertical intercepts; pictures from [2]
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With the confirmation of Einstein’s formula we now want to take a look at the prop-
erties of the thus introduced photons. From special relativity we know that energy and
velocity are related by

OF pc?
1) E=+p*?+m?c* and 2) =-—= S N (1.16)

op /p202 + m2ct ’

since for the photon the velocity is 7] = ¢ = 2,99.10"%cms ™! we conclude = | Mphoton = 0

The photon is massless.

If we then compare the energy of the photon as given by special relativity £ = pc and
quantum mechanics F = hw we get the momentum of the photon:

k=% = E=hke = p=hk.
&

Momentum of the photon ﬁphoton = hk

1.3 The Compton Effect

Another effect that revealed the quantized nature of radiation was the (elastic) scattering
of light on particles, called Compton effect or Compton scattering, see Fig. 1.8. For
a description we study energy and momentum of the photon, both particle properties.
The effect works in total analogy to a scattering process with particles, i.e. energy and
momentum are conserved.

scattered
electron

incident photon

ANNNNNNN R —
VVVVVVVYV o

Figure 1.8: Compton effect: scattering of a photon on a resting electron, picture from:
http://de.wikipedia.org/wiki/Bild:Compton_scattering-de.svg
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1.3.1 The Compton Shift Formula

We assume:

conservation of energy:
hw +mc® =hw' + F, (1.17)

conservation of momentum:
hk = hk' +p. (1.18)

From Egs. (1 17) and (1.18) we find the following relation when using the relativistic
energy E? = p*c? + m%c*, Eq. (1.16), for the electron

N
2(hw ﬁw—l—mc) —h2<k—k/> :§E2—52:m2c2. (1.19)

¢
Recalling that w = ke, w’ = k'c, k = |k| and kk’ = kk'cos ¢ we calculate

1
SR W) =Rk = n® (K k- 2kk)

C2
- S\2 e
and — A2 <k _ k) — R <k2 bR 2kk’> — R <l<:2 bR 2kzk’cos¢)
which we insert into Eq. (1.19) and obtain

2

m?c® +2mch (k — k') — 27712krk: 1 —cos¢p) = m’c

2

(

k—k" = —kk: (1 — cos @)
11\ _ h(@2r) )

2 (X a ;> T me )\A’

Multiplying finally both sides by and denoting A\’ — A = A\, we arrive at the formula:

2

Lemma 1.1 (Compton shift formula) AN = )\ — )\ = 4%% Sin2§

Result:  We discover that the wavelength of the scattered photon has increased (or the
frequency has decreased) relatively to the incoming photon due to the energy transfer to
the electron. The difference A\ is directly related to the scattering angle ¢.

It is customary to define the Compton wavelength M. = % (= 2,43 x 107%cm for
electrons).
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Since A is very small, high energy radiation (X-rays) is needed to observe the effect. If
we choose a wavelength of 7x 1079 cm for the X-rays we estimate for a maximal scattering
angle an effect of

AN 2 2 x 2,43 x 107%m
=24 — ’ ~ 0,07 = 7%. 1.20
A )\Xray 7 x 10~ %cm ’ % ( )

1.3.2 The Experiment of Compton

In the experiment by A.H.Compton, which he received the Nobel prize for in 1927, X-
rays are scattered by nearly free electrons in carbon (graphite) as seen in Fig. 1.9. The
intensity of the outgoing radiation is then measured as a function of its wavelength as can
be seen in Fig. 1.10.

A
—\/

/\/
graphite EF \ E B

Figure 1.9: Experiment of Compton: scattering of X-rays by electrons in the surface of a
carbon block

The intensity of the scattered peak (due to the quasi-free electrons in the material)
increases at the expense of the unscattered peak which remains (due to electrons bound

to the atom that do not allow a shift in the energy or wavelength). In fact, we have

max max
Iscattered > Iunscattered :

Résumé: The particle character of light is confirmed in Compton’s experiment and
we assign the energy of £ = hw and the momentum p = Ak to the (undivisible) photon.
The Compton formula (Lemma 1.1) reveals a proportionality to &, a quantum mechanical
property, which is confirmed in the experiment. Classically no change of the wavelength
is to be expected.

1.4 Bohr’s Theses

In the early nineteenhundreds many elementary questions about our understanding of
matter, especially atoms, and radiation were unanswered and created serious problems.
E.g.: Why don’t electrons tumble into the atomic nucleus? If the electrons rotate around
the nucleus, they would be in accelerated motion thus radiating, i.e., losing their energy
which keeps them on their paths. Another important question was why are sharp spectral
lines observed. In an attempt to overcome those issues Niels Bohr postulated new rules
incompatible with classical notions, which were quite revolutionary at that time.
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Figure 1.10: Compton shift: intensity of radiation as detected after the scattering process,
the scattered line is shifted against the remaining unscatterd line by A\ depending on
the scattering angle ¢, picture from Ref. [1]

Proposition 1.4.1 (Bohr’s quantum postulate)

Electrons can only take certain discrete energy values in the atom. During
the transition from a state with energy E, to another state with energy Ey, a
photon with frequency w = 3| (Ey — Ey) | is emitted (E, > Ey) or absorbed
(Ey < En).

Bohr’s atom model: Having postulated the correspondence between energy levels and
the emitted /absorbed photons the next step was to postulate how these energy levels came
to be.

Proposition 1.4.2 (Bohr’s quantization rule)
States are stationary if their respective classical paths are
quantized such that their action functional obeys

$pdg =nh
where n is an integer number (n = 1,2, ...).
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The energy spectrum for the hydrogen atom, given by the Rydberg-formula and em-
pirically already known before Bohr’s proposition, was then explained in Bohr’s theory as
the energy of an electron transition between two orbitals n and m. Furthermore Bohr’s
model could theoretically predict the value of the Rydberg constant R

o me = n(5 L) w Lo E(LL)

m2  n? A he \'m?2 n?

where £ = 2”2;’264 = 1,097 x 10° cm ™! is the Rydberg constant.

Although the model of Bohr allows a very simple and intuitive visualization, electrons
orbiting on fixed paths around the nucleus, creating an analogue to planetary movement®,
it turns out the model is not only too simple but just wrong. Nevertheless Bohr’s model
represented a great step forward but it was clear that this ad hoc prescriptions couldn’t
be considered as a definitive theory. In fact, as it turned out, the perception of particles
following distinct paths altogether has no meaning for quantum mechanical calculations
and only certain interpretations of quantum mechanics allow for their existence at all. But
generally, as we shall see in Sect. 1.7, we need to cast aside the concept of a trajectory in
quantum mechanics.

Another issue that arose was the debate whether light was a wave or composed of
particles, concepts which seemed to contradict each other but were both observed under
certain conditions. Bohr tried to formulate this problem in the following way:

Proposition 1.4.3 (Bohr’s complementarity principle)
Wave and particle are two aspects of describing physical phenomena, which
are complementary to each other.

Depending on the measuring instrument used, either waves or particles are
observed, but never both at the same time, i.e. wave- and particle-nature are
not simultaneously observable.

Similar statements can be made about other complementary quantities like position
and momentum, energy and time, spin in orthogonal directions (e.g.: oy and o).

Some of these questions are still subject of interest and play important roles in experi-
ments regarding “which way detectors”, “quantum erasers” and “continuous complemen-
tarity” to name but a few.

5Arnold Sommerfeld, 1868 — 1951, a prominent physicists at that time and teacher of many Nobel
prize winners like Heisenberg, Pauli and Bethe, has extended Bohr’s atom model to explain the fine
structure of hydrogen.
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A question remaining, which still causes discussion, is the connection of quantum
mechanics to classical physics which Bohr phrased as such:

Proposition 1.4.4 (Bohr’s correspondence principle)
In the limit of large quantum numbers classical physics is reproduced.

The propositions of this section form the basis for what is usually referred to as the
Copenhagen interpretation of quantum mechanics, which was developed mainly by Niels
Bohr and Werner Heisenberg.

Bohr was the leading figure of quantum physics at that time and his institute in
Copenhagen became the center of the avantgarde of physics where physicists all over the
world met, just to mention some names: Heisenberg, Pauli, Gamow, Landau, Schrodinger,
Kramers, .... Bohr’s dispute with Einstein about the foundations of quantum mechanics
became legendary. Bohr was awarded the Nobel prize in 1922.

1.5 Wave Properties of Matter

As we will see in this section, not only radiation, but also massive particles are in need of
a more sophisticated description than given by classical mechanics. To associate micro-
scopical (quantum) objects, as for example electrons, with idealized (especially localized)
point-particles, carrying sharp momenta, is not only misleading, but simply wrong (see
Sect. 1.6 and Sect. 2.6) and can not account for all observed phenomena. A very impor-
tant step towards a more complete description was Louis de Broglie’s proposal of wavelike
behaviour of matter in 1923, which he received the Nobel prize for in 1929.

1.5.1 Louis de Broglie’s Hypothesis

In view of particle properties for light waves — photons — Louis de Broglie ventured to
consider the reverse phenomenon, he proposed to assign wave properties to matter, which
we will formulate here in the following way:

Proposition 1.5.1 (Louis de Broglie’s hypothesis)
To every particle with mass m, momentum p and energy é? a wavelength of

_ h _ h ; ; _ _ P
AdeBroglie = H = VamE associated, where £ = Ey, = .

The above statement can be easily understood when assigning energy and momentum

h
E =hw and p:hkzx (1.22)
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to matter in (reversed) analogy to photons. If we then express the wavelength A through
the momentum p and use the form of the kinetic energy E = p?/2m to write p = v2mE
we directly get the de Broglie wavelength Aqeproglie 0f massive particles.

In this connection the notion of matter waves was introduced. De Broglie’s view was
that there exists a pilot wave which leads the particle on definite trajectories. This point
of view — wave and particle — being in contrast to Bohr’s view leads, however, into serious
difficulties as we shall see.

Note that above wave assignment was made for free particles, i.e. particles that are
not subjected to any outer potential. The question whether the potential energy would
influence his hypothesis was also raised by de Broglie and will be tangible when we con-
sider Schrodinger’s theory (see Chapt. 2) where also the nature of the waves becomes
more evident in terms of Max Born’s probability interpretation (see Sect. 1.7).

1.5.2 Electron Diffraction from a Crystal

To test his hypothesis de Broglie proposed an experiment with electrons. He observed
that, following Proposition 1.5.1, electrons with a kinetic energy of several eV and mass
me = 0,5 MeV would have a de Broglie wavelength of a few A. For example, for an energy
of 10 eV we obtain Agegrogiie = 3,9 /01, which is the same order of magnitude as the lattice
spacing of atoms in crystals, thus making it possible to diffract electrons from the lattice
analogously to the diffraction of light from a grating.

The corresponding experiment has been performed by C.Davisson and L.Germer in
1927 and independently by G.P. Thomson. It involved electrons which were sent with
appropriate velocity onto a nickel crystal with lattice spacing d = 0,92 A, see Fig. 1.11.

The intensity of the outgoing electron beam was then measured for different angles,
reproducing the diffraction pattern postulated by W.H.Bragg and (his son) W.L.Bragg
for X-rays. The similarity of X-ray- and electron-diffraction can be seen in Fig. 1.12.

The Bragg condition for constructive interference is | sinf = ’2‘—2‘ , neN.

The observation of an intensity maximum of the diffraction (Bragg peak) for a scat-
tering angle ¢ = 50°, which translates to the angle in the Bragg condition of © = 65°,
gives us

= X =2x0,92Axsin65° = 1,67 A,

which is in perfect accordance with the de Broglie wavelength for an acceleration voltage
of U =54V used in this experiment.

The Davisson-Germer experiment thus helped to confirm the wavelike nature of matter
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Figure 1.11: Davisson-Germer Experiment: a) An electron beam is diffracted from
a nickel crystal and the intensity of the outgoing beam is measured. b) Scheme
of the Bragg diffraction from a crystal with lattice spacing d, picture (b) from:
http://en.wikipedia.org/wiki/Image:Bragg_diffraction.png

and to validate the claims of early quantum mechanics. Davisson and Thomson® were

awarded the Nobel prize in 1937.

Figure 1.12: Comparison of X-ray- (left) and electron- (right) diffraction patterns caused
by the same aperture, namely a small hole in an aluminium foil; pictures from Ref. [2]

61t’s quite amusing that his father J.J. Thomson received the Nobel prize in 1906 for showing the
“opposite”, namely that the electron is a particle.
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1.6 Heisenberg’s Uncertainty Principle

We now want to introduce a quantum mechanical principle, Heisenberg’s uncertainty prin-
ciple that is somehow difficult to grasp conceptually even though the mathematics behind
is straightforward. Before we will derive it formally, which we will do in Sect. 2.6, we try
to make it plausible by more heuristic means, namely by the Heisenberg microscope. The
Gedankenexperiment of the Heisenberg microscope needs to be seen more as an example
for the application of the uncertainty principle, than a justification of the principle itself.

1.6.1 Heisenberg’s Microscope

Let’s start by detecting the position of an electron by scattering of light and picturing
it on a screen. The electron will then appear as the central dot (intensity maximum)
on the screen, surrounded by bright and dark concentric rings (higher order intensity
maxima/minima). Since the electron acts as a light source we have to consider it as an
aperture with width d where we know that the condition for destructive interference is

sing = , neN. (1.23)

d
So following Eq. (1.23) the smallest length resolvable by a microscope is given by
d = \/sin ¢ and thus the uncertainty of localization of an electron can be written as

A

sing

It seems as if we chose the wavelength A\ to be small enough and sin ¢ to be big, then

Ax could become arbitrarily small. But, as we shall see, the accuracy increases at the

expense of the momentum accuracy. Why is that? The photons are detected on the

screen but their direction is unknown within an angle ¢ resulting in an uncertainty of the

electron’s recoil within an interval A. So we can identify the momentum uncertainty (in
the direction of the screen) of the photon with that of the electron

Arx = d =

(1.24)

h
Ap)e( — Apzhoton — pPhoton singb — X singb, (125)

where we inserted the momentum of the photon pth*® = Ak = h/\ in the last step.
Inserting the position uncertainty of the electron from Eq. (1.24) into Eq. (1.25) we get

Heisenberg’s Uncertainty relation: AxAp, = h

which he received the Nobel prize for in 1932. We will further see in Sect. 2.6 that the
accuracy can be increased by a factor 47 and that the above relation can be generalized
to the statement



20 CHAPTER 1. WAVE-PARTICLE DUALITY

h
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This is a fundamental principle that has nothing to do with technical imperfections of
the measurement apparatus. We can phrase the uncertainty principle in the following way:

Proposition 1.6.1

Whenever a position measurement is accurate (i.e. precise information about
the current position of a particle), the information about the momentum is
tnaccurate — uncertain — and vice versa.

1.6.2 Energy—Time Uncertainty Principle

We now want to construct another uncertainty relation, the energy-time uncertainty,
which describes the relation between the uncertainties At for the time a physical process
lasts and AFE for the respective energy. Consider for example a wave packet traveling
along the x-axis with velocity v. It takes the time At to cover the distance Az. We can
thus write ) A
b . x
energy: FE = o velocity: v = v (1.26)
Calculating the variation AE of the energy E and expressing At from the right hand side
of Eq. (1.26) by the velocity v and substituting v = p/m we get

A
variation: AE = £Ap, time period: At = e LN (1.27)
m v p

The right hand side represents the period of time where the wave is localizable. When we
now multiply At with AE we arrive at:

AMAE = DAz LAp = Aerp > 2, (1.28)
m

p

DO | St

AE At >

(b

We can conclude that there is a fundamental complementarity between energy and
time. An important consequence of the energy—time uncertainty is the finite “natural”
width of the spectral lines.

1.7 Double—Slit Experiment

1.7.1 Comparison of Classical and Quantum Mechanical Results

We will now take a look at the double-slit experiment, which is well-known from classical
optics and whose interference pattern is completely understood when considering light
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as electromagnetic waves. The experiment can be performed with massive particles as
well but then a rather strange phenomenon occurs. It turns out that it is impossible,
absolutely impossible, to explain it in a classical way or as Richard Feynman [3] phrased
it emphasizing the great significance of the double—slit as the fundamental phenomenon
of quantum mechanics: “ ... the phenomenon [of the double—slit experiment| has in it the
heart of quantum mechanics. In reality, it contains the only mystery.”

The associated experiments have been performed with electrons by Mdéllenstedt and
Sonsson in 1959 [4], with neutrons by Rauch [5] and Shull [6] in 1969 and by Zeilinger
et al. in the eighties [7]. More recently, in 1999 and subsequent years, Arndt et al. [§]
performed a series of experiments using large molecules, so-called fullerenes.

Classical considerations: Let’s consider classical particles that pass through an array
of two identical slits and are detected on a screen behind the slits. When either the first
slit, the second or both slits are open then we expect a probability distribution to find the
particle on the screen for the third case (both open) to be just the sum of the distributions
for the first and second case (see left side of Fig. 1.13). We can formally write

P{%® = P + Py, (1.29)

where Px (k = 1,2) is the distribution when the k-th slit is open. For classical objects,
like e.g. marbles, Eq. (1.29) is valid (for accordingly high numbers of objects).

EM FuRball 2008 QuantenfuBBball Universitdt Wien
TN
A
~ I ; i ~
3 Ry N
2 3
~ ~
3 i Py N
A -

Figure 1.13: Illustration of the double-slit experiment with classical particles (left) and
quantum mechanical particles (right); picture used with courtesy of M. Arndt
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Quantum version: We now consider the same setup as before, but instead of classical
particles we use small objects like electrons or neutrons together with the corresponding
detection device and we count the number of clicks from the detector. When either one or
the other slit is open, we obtain from the clicking rate some kind of probability distribution
similar to the classical case (of course, the intensity need not be a single peak, see for
example Fig. 1.12, but the explicit form does not matter here). More important, however,
is the case when both slits are open. Then the probability distribution produced is not
equal to the sum of the single distributions of either slit as in the classical case, which is
illustrated on the right side of Fig. 1.13

PR # P+ P (1.30)

It turns out that the intensity, the probability distribution, resembles an interference
pattern of waves. The intensity, the clicking rate, is high where constructive interference
of the waves is observed and low where destructive interference occurs.

1.7.2 Interpretation of Quantum Mechanical Results

We now want to formulate the ideas of the previous section in a more rigorous way, con-
centrating on electrons as representatives of quantum mechanical objects.

We describe the behaviour of the electron by a wave ¢(x,t) which is a complex-valued
function.

Proposition 1.7.1 (Born’s probability interpretation)
The probability P of finding the electron at a certain position x at the time t,
is given by the squared amplitude |(x,t)|* = ¥ *(x,t)Y(x,t) — the intensity.

For this interpretation of the wave function Max Born was awarded the 1954 Nobel prize.

From Prop. 1.7.1 we then have the following probability distributions:

slit 1 open P, = |y (1.31)
slit 2 open Py = |ahy)?
slit 1 and 2 open P = []> = [ty + o> = [1]* + |[¢o* +  2Re(¢iihn)
—_————

interference term

We see that for both slits open the resulting total wave function is a superposition of the
individual wave functions v = 11 + 1)5. Thus the total probability corresponding to the
intensity is not just the sum of the individual probabilities. From the interference term
in Eq. (1.31) — which may have any sign — we conclude that if the term vanishes we won’t
observe any interference and if it is positive or negative we can expect constructive or
destructive interference.
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Résumé: An electron as a quantum system passes through the double—slit, then hits a
screen or a detector. It produces a very localized lump or causes a click in the detector
thus occurring as a definite particle. But the probability for the detection is given by the
intensity || of the wave 1. It is in this sense that an electron behaves like a particle or
like a wave.

Remark I: The probability distribution — the interference pattern — is not created,
as one could deduce, by the simultaneously incoming electrons but does arise through
the interference of the single electron wave function and thus does not change when the
electrons pass through the double—slit one by one. The spot of a single electron on the
screen occurs totally at random and for few electrons we cannot observe any structure,
only when we have gathered plenty of them, say thousands, we can view an interference
pattern, which can be nicely seen in Fig. 1.14.

Figure 1.14: Double-slit experiment with single electrons by Tonomura: The interfer-
ence pattern slowly builds up as more and more electrons are sent through the double
slit one by one; electron numbers are a) 8, b) 270, ¢) 2000, d) 60000; picture from
http://de.wikipedia.org/wiki/Bild:Doubleslitexperiment_results_Tanamura_1.gif

Remark II: Path measurement If we wish to gain which-way information, i.e. de-
termine whether the electron passes slit 1 or 2, e.g. by placing a light—-source behind the
double—slit to illuminate the passing electrons, the interference pattern disappears and
we end up with a classical distribution.
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Proposition 1.7.2 (Duality)
Gaining path information destroys the wave like behaviour.

It is of crucial importance to recognize that the electron does not split. Whenever an
electron is detected at any position behind the double—slit it is always the whole electron
and not part of it. When both slits are open, we do not speak about the electron as
following a distinct path since we have no such information”.

1.7.3 Interferometry with Cs—Molecules

Small particles like electrons and neutrons are definitely quantum systems and produce
interference patterns, i.e. show a wave-like behaviour. We know from Louis de Broglie’s
hypothesis that every particle with momentum p can be assigned a wavelength. So it’s
quite natural to ask how big or how heavy can a particle be in order to keep its interfer-
ence ability, what is the boundary, does there exist an upper bound at all ?

This question has been addressed by the experimental group Arndt, Zeilinger et al. [8]
in a series of experiments with fullerenes. Fullerenes are Cgp—molecules with a high spher-
ical symmetry, resembling a football with a diameter of approximately D ~ 1nm (given
by the outer electron shell) and a mass of 720 amu, see Fig. 1.15.

Figure 1.15: Illustration of the structure of fullerenes: 60 carbon atoms are arranged in
pentagonal and hexagonal structures forming a sphere analogously to a football; picture
used with courtesy of M. Arndt

In the experiment fullerenes are heated to about 900 °K in an oven from where they are
emitted in a thermal velocity distribution. With an appropriate mechanism, e.g. a set of

"Certain interpretations of quantum mechanics might allow one to assign a definite path to an electron,
though one would also need to introduce additional parameters which cannot be sufficiently measured
and thus do not improve the predictive power of the theory. For references to the Bohmian interpretation
see for example [9] and [10] and for the many worlds interpretation [11]
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constantly rotating slotted disks, a narrow range of velocities is selected from the thermal
distribution. After collimation the fullerenes pass a SiN lattice with gaps of a = 50 nm
and a grating period of d = 100 nm and are finally identified with help of an ionizing laser
detector, see Fig. 1.16.

grating ionizing
chopper 104 m 100 nm laser detector

ﬂﬂ 3 @ @}

collimation slits 1.25m 7~
7 um 7 um

fullerene slotted disk
oven velocity selector

Figure 1.16: Experimental setup for fullerene diffraction; picture by courtesy of M. Arndt

For a velocity vmax = 220m/s the de Broglie wavelength is

h 1
)\deBroglie = —=2,5pm ~

—D 1.32
mu 400 (1.32)

thus about 400 times smaller than the size of the particle.

As the angle between the central and the first order intensity maximum is very small
(thus sin® ~ O)

A eBroglie
0 = % = 25 urad = 57 (1.33)

a good collimation is needed to increase the spatial (transverse) coherence. The whole
experiment also has to be performed in a high vacuum chamber, pictured in Fig. 1.17, to
prevent decoherence of the fullerene waves by collision with residual gas molecules.

The fullerenes are ionized by a laser beam in order to simplify the detection process,
where an ion counter scans the target area, see Fig. 1.16.

We can also conclude that the fullerenes do not interfere with each other due to their
high temperature, i.e. they are in high modes of vibration and rotation, thus occurring as
classically distinguishable objects. Even so to prevent collisions the intensity of the beam
is kept very low to ensure a mean distance of the single fullerenes of some mm (which
is about 1000 times further than the intermolecular potentials reach). As a side effect
of the high temperature the fullerenes emit photons® (black body radiation) but, fortu-
nately, these photons don’t influence the interference pattern because their wavelengths
A~ 5 — 20 um are much bigger than the grating period (the double-slit). Thus we don’t
get any path information and the interference phenomenon remains.

8The probality for photon emission is rather small for the 900 K mentioned, for temperatures higher
than 1500 K the probability of emitting (visible) photons is considerably higher but their effects can be
neglected for the setup we have described here.
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Figure 1.17: Photography of the experimental setup; picture by courtesy of M. Arndt

Looking finally at the result of the fullerene interferometry in Fig. 1.18 we see that
the detection counts do very accurately fit the diffraction pattern® of the grating, thus

demonstrating nicely that quite massive particles behave as true quantum systems.
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Figure 1.18: Results of the fullerene experiments, see [12]; picture by courtesy of M. Arndt

9The inquisitive reader might have noticed that for a grating with a 100 nm period and 50 nm wide
slits, the second order diffraction maximum shouldn’t exist at all, since the first order minimum of the
single slit should cancel the second order maximum of the grating. The reason for its existence lies in the
effective reduction of the slit width by Van-der-Waals interaction.

10Tt’s quite amusing to notice, while the mass of a fullerene, also called bucky ball, does not agree with
the requirements for footballs the symmetry and shape actually does, and furthermore the ratio between
the diameter of a buckyball (1 nm) and the width of the diffraction grating slits (50 nm) compares quite
well with the ratio between the diameter of a football (22 cm) and the width of the goal (732 cm).



Chapter 2

Time—Dependent Schrodinger
Equation

2.1 Wave Function and Time—Dependent Schrodinger
Equation

In Chapt.1 we discussed how to understand the wave—particle duality. According to
Planck and Einstein the energy and frequency of light are related by £ = hw. De Broglie
extended this dualism to massive particles by relating in addition the momentum to the
wave vector p = hk.

It was Erwin Schrodinger who reconsidered de Broglie’s matter waves and discovered
in 1926 a wave equation, the equation of motion corresponding to the wave nature of
particles, which fits the physical observations. This differential equation is a fundamental
equation and cannot be derived from first principles but we can make its form plausible.

Let us consider plane waves or rather wave packets which are of the form

v (t,x) = ilkr—wt) (2.1)
T odk -

Y (t,z) = Nor (k) eilhe=ewt) (2.2)

We differentiate these waves with respect to t and x and recall the relations of wave and
particle properties, Eq. (1.22)

) 2 — 7 i(kz—wt)
gblen) = Bev=Ev - /m\hg/m@e (2.3)
SNV (ta) = Bk b =py /m@,@() ko=t (2.4)

p

AU = (WEe=pe > [ Qﬂku“w). (25)

p2 p2

27
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The nonrelativistic energy-momentum relation for massive particles, where we assume
for simplicity that the potential V' = V(z) is independent of time

2

E= 2p—m +V(2), (2.6)

then provides a differential equation for 1) which Schrodinger assumed to hold quite gen-
erally for massive particles in an external potential V' (z)!.

Proposition 2.1.1 (Time-dependent Schrédinger equation)

ihgute) = (~5 A+ V(@) (te) = Ho(ta)

The operator H = —%A + V(x) is called the Hamiltonian of the system, A is
Planck’s constant and m is the mass of the particle.

The solution 9 (t, z) of the Schrédinger equation is called the wave function. It con-
tains all the information about a physical system. The physical interpretation of the wave
function is due to Max Born (see Prop. 1.7.1) and can be phrased in the following way:
The probability for finding the particle in an interval [z, z + dz] is given by [ (¢, z)|?dz,
which we have illustrated in Fig. 2.1.

Remark I:  In deducing the Schrodinger equation within plane waves and wave packets
we see that we can assign operators to the physical quantities energy and momentum
L 0 :
malﬂ:El/J and —iAVyY = pip. (2.7)
This quantum mechanical correspondence between physical quantities and operators
L0 :
E — zha and p — —ihV (2.8)

is quite generally valid (when applied to any wave function). To classical relations corre-
spond quantum mechanical ones. Thus we can quickly find the Schrodinger equation by
starting with the classical Hamilton function H(z,p) = % +V = E. We substitute Eq.
(2.8), get exactly the Hamilton—operator H which applied to a wave function represents
the Schrodinger equation.

'Historically, Schrédinger who was informed by Einstein about de Broglie’s thesis gave a talk at
the ETH Zirich in 1925. There Debye encouraged him to look for a wave equation and Schroédinger
indeed found quickly one, nowadays known as Klein-Gordon equation, by using the relativistic energy—
momentum relation, which however did not reproduce the spectrum of the H-atom correctly. During his
Christmas vacations in a Pension near Arosa Schrédinger tried again by working now with nonrelativistic
relations and discovered the successful “Schrodinger equation” which describes the spectrum correctly.
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[ (t, )]
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Figure 2.1: Probability interpretation of the wave function: The probability of finding
the particle in the interval dx is given by the striped area. The probability to find the
particle at location A is highest, whereas it is lowest for location B.

Remark 1I: The statistical interpretation of the wave function leads to a principal
uncertainty to localize a particle. We cannot predict the definite measurement outcome
for a specific particle, where it is localized at a certain time, thus we cannot assign a path
to the particle.

Since we want to associate the wave function with a single particle, it is reasonable to
require the probability to find the electron anywhere in space to be exactly equal to one.
Since this may not be the case for all ¢ a priori, we introduce a normalization condition:

oo

/d:c [t z)*=1. (2.9)

—00

The normalization thus imposes a condition on the wave function, namely on its
asymptotic behaviour, i.e. for |z| — oo

const. . . const.

I-dim. |(t,x)] <

In other words, the wave function must be a square integrable function
Y(t,z) € Ly  space of all square integrable functions. (2.11)

We conclude that formal solutions of the Schrodinger equation, that are not normal-
izable, have no physical meaning in this context.
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Example:  Plane waves e!**=“% are solutions of the Schrédinger equation, which can
only be normalized in a box. For a box of length L we write

1 .
tx) = ——e®w  for0<az<L 2.12
Y(t,z) = 0 outside of box
L
1 i(kz— wt) z(kx wt) __ L
= d:mb (t,x)(t,x) = dx e ) Lzl. (2.13)
0

So we conclude that plane waves can only represent particles in a box, quite generally
we need wave packets for their description.

Résumé:
The Schrodinger equation is a partial differential equation with the following properties :

1. 1*® order in time ¢: the wave function is determined by initial conditions, which
is desirable from a physical point of view,

2. linear in v : = superposition principle: linear combinations of solutions are again
solutions, i.e. if i1, 1y are solutions = 1) = c11 + 219 with ¢, co € C is a solution,

3. homogen: the normalization holds for all times t.

2.2 Continuity Equation

With the probability density |¢(¢,Z)|? we can associate a current density j(¢,#) analo-
gously to the charge density in electrodynamics. These densities will satisfy a continuity
equation.

Let us start from the time dependent Schrodinger equation in 3 dimensions

h%z/z(t,f) = H(t, ) (2.14)

and form its complex conjugate, where we use that the Hamiltonian H is a hermitian
operator, which, in the present context?, means that H = H *, to gain

0 ‘ly o
—zhaw( ¥) = Hy*(t, 7). (2.15)

2A mathematically more precise formulation of this criterion will be given later in Sec. 2.3
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Definition 2.1 The probability density p is given by the modulus squared
of the wave function 1

p(t,T) = [P, 7)* = *¥(t,7) .

Performing the derivative of the probability density p with respect to time, we get

0 0 , .
—p(t, %) = =YY, T) = Y~ * 2.16
where we have used the notation 2 ¢ = ¢ Inserting the Schrédinger equation (2.14)

and its complex conjugate (2.15) into Eq. 2.16 we find

1
LT = — ()6 — o HY) = (217)

ki . . 1 * . _

= 5 (06 = Ag] — —[Viry — Vg =

Vap*ap

h = — *

= 5 VIV — V],

Definition 2.2 We define the probability currentf as

—

J(t, @) = S [V — pVY*]

With this definition we can write down a continuity equation analogously to the con-
tinuity equation in electrodynamics:

Theorem 2.1 (Continuity equation) %p(t,f) + Vjt,7) =0

Theorem 2.1 implies the conservation of probability for all times

o

/d3x|¢(t,f)|2 =1 Vt>0, (2.18)

—0o0

analogously to the charge conservation. Thus the continuity equation, Theorem 2.1,
means that a change of the probability in a volume V is balanced by a probability flux
leaving V. So the probability and current densities behave like actual densities.
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Proof: To prove the conservation of probability (2.18) we assume that 1 is normalized
to 1 at t = 0 and that the probability density is only nonzero in a finite region V € R3.
Performing the derivative of p with respect to time and using the continuity equation,
Theorem 2.1, we get

% / e plt 7) = — / PV (¢, 7) / Af it 7). (2.19)

\%4 1% )%

We have used the Theorem of Gaufl to convert the integral over a 3—dimensional space
V into an integral over its (2-dimensional) boundary 0V which, for convenience, we can
assume to be a sphere Sy with radius R. By requiring the wave function to be square

integrable it has to decrease stronger than }% for R — oo. Therefore the probability

1

25 (since the nabla operator is proportional® to 1/R: V x +)-

current has to fall off like

If we consider the last integral of Eq. (2.19) in the limit R — oo, using spherical
coordinates, we find it to be proportional to

1
x /dRRQﬁ — 0 for R — . (2.20)
So we can conclude
= /d%p(t,f) = const. = 1 q.e.d. (2.21)
Remark: The probability current j can be expressed by the momentum operator

P = —ihvV by noting that

j6.5) = oo [y - ] = (2.22)
= VD) + (i) ] =

— LRe((-in%)v) = LRe(w'Py).

As an example we calculate the probability current of a plane wave

- 1 o o 7o 1 7 T ﬁ
(t.7) = —R —i(kZ—wt) —ihvV i(kZ—wt) — —R —i(kZ—wt) hk i(kZ—wt) _ Y _ =
7(t, %) - e(e (—thV)e ) - e(e : e ) — =1
p
(2.23)

and see that probability "flows” along the direction of the particle’s velocity.

30f course since this is an operator, this has to be understood as acting on a wave function.
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2.3 Observables

In quantum mechanics there are two important concepts, which we use to describe physical
objects:

1. State of a system, which is described by the wave function v (¢, Z).

2. Observables, which are physical quantities we want to measure, like e.g. posi-
tion, momentum, energy. These observables are represented by hermitian operators
acting on the wave function.

The rules to combine these concepts are provided by quantum mechanics. We now intro-
duce some mathematical background which we will need to set up these rules.

2.3.1 Operators

Definition 2.3 A is called a linear operator, if for Ay (z) = ¢1(z) and
Apy(x) = ¢a(x), where iy, Yo, 1, ¢2 € Lo, follows that

Al + coho) = 1 + 292 c1,c0 € C.

Remark: Linear operators, such as e.g. V, A, %, V(z), obey the law of distributivity
(with respect to addition and multiplication in the space of linear operators) in the sense
that

(A+ B)v = A¢ + By (2.24)
ABY = A(BY)

Furthermore the space of linear operators is equipped with an absorbing element (or
zero operator) 0 and a neutral element (or unit element, or identity) 1, satisfying

1¢ =¢ and 0y =0 Vo (2.25)
and which commute with every operator
1A = A1 and 04 = A0 VA. (2.26)

The commutativity property, however, does not hold generally for arbitrary operators
Aand B

AB # BA. (2.27)
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2.3.2 Scalar Product

We will now introduce the notion of the scalar product used in quantum mechanics.
This will be done in the so called ”Dirac notation” of "bra’s” and "ket’s” which will be
thoroughly investigated in Chapter 3.

Definition 2.4  We define the scalar product of two wave functions ¥ and ¢ by

o0
3 — —
W) = [ v @@,
—00
Remark: The scalar product is formally written as the product® of "bra” (.| with

"ket” |.). Other notations of this scalar product include (¢, ¢) and (¢, ¢). If the wave
function depends on discrete variables, e.g. spin orientation, instead of continous ones,
like e.g. position, the scalar product from Definition 2.4 reduces to

Wlg) = > vron. (2.28)

Properties of the scalar product:

(@ 1) = (¥19) (2.29)
(@ |crhy + cotha) = c1 (@ |11) + co(¢ |t2) linear in "ket” (2.30)
(11 + 20 ) = 1 (01 |¢) + (P2 |¢)  antilinear in "bra” (2.31)

Wy >0 Vo #0, @) =0 < ¢ =0 positive definite (2.32)

Operators in the scalar product: °

Suppose A is an operator satisfying Ay = ¢, where ¢, ¢ € Lo, then

W 1Ag) = / B (F)AY(T) (2.33)

4Strictly speaking, this is only a product in the sense that one object acts on the other (from the left
side).

5We will omit the limits of the integration in the scalar product from now on and implicitly assume
them to be oo unless stated otherwise.
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Definition 2.5 AT is called the adjoint operator to A, if ¥ ¥, ¢ € Ly

(Al |¢) = (¥ |A¢).

That means more explicitly
/ Bx AT (F)p(F) = / dPx*(F)Ao(T) . (2.34)

In matrix notation we can write the the adjoint® matrix as the complex conjugation
of the transposed matrix or vice versa, i.e. AT = (AT)* = (4%)T.

Here the operator in the scalar product is assumed to act to the right side”, justifying
the notation

(W[ Alg) = (W [Ag) . (2.35)
Definition 2.6 An Operator A is called hermitian, if
Al = A

and the domains satisfy D(AT) D D(A)
If D(AT) = D(A), then A is called self-adjoint.

Since the difference between hermitian and self-adjoint operators only plays a role for
unbounded operators, we will neglect it here and use the terms synonymously.

Examples:

e Position operator X X¢($) = :L'w(x)

defined for functions 1, satisfying:
(X9 | Xop) = /dm? [W(x)]* < oo (2.36)

The generalization to 3 dimensions® is straightforward by labeling the above oper-
ator X as Xj, the i-th compononent of a vector operator X. In this case we also
require the integral in Eq. 2.36 to be finite when carried out over d%.

The position operator X is a hermitian operator.

6The adjoint operator is also called the hermitian conjugate (mainly by physicists).

"This is not always the case but operators acting otherwise are often noted with arrows indicating
their direction of action, e.g. D, D

8In the following we will mostly ignore the generalizations to 3 dimensions, since these can (mostly)
be done by simple replacements, e.g. x — &, dz — d°z, at the most accompanied by constant factors due
to Fourier transformations, but won’t help us to gain any more insight in the physical or mathematical
processes involved.
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e Momentum operator P Piy(x) = —ihV ¢(x)

defined for functions v, satisfying:
(P |PE) = B2 /dm V()2 < oo (2.37)
For example, for a plane wave ¢(z) = e™®?/"  we get? Py (z) = pip(x).

The momentum operator also is hermitian: P = P.

e Hamiltonian #  Hi(z) = <—%A + V(:z:)) b(x) = Eb(x)

which is defined for ¢ 's such that

(Hvy |HY) = E? /dm|1/)(x)|2 < 0. (2.38)

2.4 Expectation Values

Having now explained some basic concepts in quantum mechanics, wave functions, scalar
products and observables, we now need to discuss the rules that quantum mechanics
provides to make physical predictions. Let’s first remember the concepts from Section 2.3
and make them a little more precise:

Definition 2.7 The state of a quantum mechanical system is represented by a
vector ) (ket) in a complex vectorspace, called Hilbertspace,
equipped with a scalar product.

Definition 2.8 Observables in quantum mechanics are represented by hermitian
operators acting on the state vectors in Hilbertspace.

2.4.1 Expectation Values of Operators

We now want to find a way to relate these theoretical concepts with experimental out-
comes, i.e., measurements. Since we already assume quantum mechanics to be of a sta-
tistical character (remember Born’s probability interpretation, Prop. 1.7.1), let’s take a
brief look at some concepts of classical statistics.

If we want to calculate the average of a set of values {x;}, we do so by calculating the
arithmetic mean

1 n
T = — i- 2
T nzzlx (2.39)

9remember p/h =k (Eq. 1.22)
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If the possible values are not equally probable, we use the weighted arithmetic mean

Tr =

_ Z?: Wi T;
=1 "1

For a (Riemann-integrable) function f(x) we can generalize the arithmetic mean to

X b
=3 dx f(x). (2.41)

a

|

Analogously to Eq. (2.40) we introduce a weight-function w(x), which we can interpret
as probability distribution, to get

fbdx w(x) f(z)
[ =" : (2.42)
[ dzw(x)

Returning now to quantum mechanics, we notice the resemblance of Eq. (2.42) to
the operator in the scalar product (Eq. 2.33), when interpreting *1) as a probability
distribution. Thus we can write the weighted mean value of an operator A as

(A) = WlAp) (2.43)

@ 1¥)

Since we require our wave function to be normalized to 1 (Eq. 2.9) we define:

Definition 2.9 The expectation value of an observable A in the state |1)

15 given by
(A), = (W[A|Y).

The expectation value (A), gives us the outcome of a series of measurements of the
observable A of a physical system prepared in the state 1. It thus has a physical meaning
with respect to predicting measurement outcomes for an ensemble of identically prepared
objects, even if the individual results are at random.
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Properties of the expectation value:
(1) = (¥ ]y) =1 (2.44)

I (A)eR if Aishermitian A= AT (2.45)
(A)€ei-R if Ais anti-hermitian A= —A"

II) (A)>0 if A is a positive operator A >0 (2.46)

V) (A) is linear (¢ A+ pB) =a(A)+ B (B) (2.47)
a,B € C, A,B linear operators

Examples:

e Expectation value of a potential V' (x)

(V(z)) = (¢|V(2)|[¢) = /dfffV(I)|¢(110)|2 (2.48)

In accordance with our consideration of classical statistics this is exactly the classical
expectation for a potential controlled by a distribution | (z)|*.

e Expectation value of the position operator X

(X) = (4| X|) = /dmww (2.49)

For the postition operator we again get the classical result for the variable z, dis-
tributed by the probability density | (z)|?.

e Expectation value of the momentum operator P

e}

(P) = (4| P|Y) = —ih /dw<x>*w<x> - / dppld))F (250

—0o0

1 (p)|? takes over the role of the probability density for the momentum-variable.

The function ¢)(p) is the Fourier-transform'® of the wave function ()

~ 1 {
00) = o= [dr exp(—gpr)ito). (251)

10The change of variables, k = p/h, also requires the inclusion of % in the factor 1/v/27 that normally
occurs in the Fourier transformation.
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Proof: To prove the last step of Eq. (2.50 ) we form the inverse transformation to
Eq. (2.51)

x dp ex )1 2.52

0(w) = <= [dp exp (pe)o) (252)

and insert it into the expectation value of P, Eq. (2.50),
(P) = o [ar [an [ exp (1) 0 (=i09) e () D) =
_ %/dm/dp/dp/ exp(—%p’x)lﬁ*(p’)p exp(%px)lﬁ(p) =
— o o [0 [dep e (G- )0 50 00). (2.53)

Now we use the Dirac delta distribution

d(p—p) = dx exp (7%(29 —p)x), (2.54)

2rh

which is defined!! by its action in an integration

[e.9]

/dx'é(x _ 2 fla') = f(z). (2.55)

—0o0

With help of formulas (2.54) and (2.55 ) we can rewrite Eq. (2.53) as
(2.53) /dp /dp p(p—p") " (") d(p) = /cipz?W(zo)l2 qed.  (2.506)

2.4.2 Uncertainty of Observables

As we now know how to compute the quantum mechanical predictions for measurement
outcomes, we want to go a step further by calculating how trustworthy our predictions
are. That means, how much possible measurement outcomes will vary or deviate, leading
to a variance, or a mean-square deviation, or an uncertainty. To do this we again inves-
tigate the methods of classical statistics.

Performing a series of measurements with outcomes {z;} we already know from Eq.
(2.39) and Eq. (2.40) how to calculate the mean values. If we started from there by
calculating the deviations of the individual values from their mean value, then some of
the deviations might cancel each other in the sum since these deviations could have either
sign. Therefore it’s better to compute the arithmetic mean of the squared deviations, the

variance
1 n
2 - = - 2.57
PMCEL (2:57)

HFor a more rigorous definition we must refer the interested reader to a standard lecture, see e.g.
Ref. [14], and/or textbook on functional analysis.
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We then take its square-root, the standard deviation, which gives us a measure for the
width of the distribution, i.e., how good the mean value approximates the individual
results, see Fig. 2.2,

o= lZ(xi —T)2. (2.58)

=1

34.1% | 34.1%

Figure 2.2:  Standard deviation: In this normal (or ”Gaussian”) distribu-
tion we can see how the standard deviation ¢ quantifies the probability of
finding the next result in o-intervals around the mean value; figure from
http://en.wikipedia.org/wiki/Image:Standard_deviation_diagram.svg

To convey this concepts to quantum mechanics we start by defining a deviation oper-
ator A associated with our observable A

A=A-(A). (2.59)

To compute the variance we calculate the expectation value of the squared deviation
operator

<Z2> = (A2 —24(A) + (A)?) =
= (A7) —2(A)(4) + (4) =

= (A?) — (A) =: (AA)?. (2.60)

Finally, we take the square root and define the variance or uncertainty.
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Definition 2.10 The uncertainty of an observable A in the state |1))
1S given by

AA = \[(A2), — (A)] .

The uncertainty of an observable represents a variation or fluctuation of possible mea-
surement outcomes and it depends on the state |1) of the system. Although we followed
here ideas of classical statistics we must stress that the uncertainty of an operator is not
related to any technical imperfections of the measurement process. It is an important,
genuine quantum feature !

The uncertainty can even vanish (much unlike technical imperfections) for certain
states, which we will formulate by the following theorem:

Theorem 2.2  The uncertainty of an observable A vanishes if, and only if, the
state 1)) of the system is an eigenvector of the operator A.

AA=0 & AR) =al))

The value a € R is called the eigenvalue'? of A, corresponding to the eigenvector |¢).

Proof:
(A), = W AW = @lal) S a@)y=a = (A) =d
(A2), = Wl AA) = Wla® ) "X @) =a® = (4) =d
= AA = \/(A2>w—<A>i:\/a2—a2:0 ge.d.

2.5 Commutator of Operators

Up to now we have only considered individual operators or at the most products of the
same operator, which didn’t cause a problem. However, if we multiply different operators,
we face an interesting consequence. Generally, those products are not commutative, which
means that the order of application of the operators does matter, i.e.:

AB + BA. (2.61)

12For general operators the eigenvalues would be complex numbers, but for hermitian operators, i.e.
observables, the eigenvalues are real.
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Take, for example, position and momentum operator X and P
Xo(a) = 2v(@)  Pula) = —ihV (), (2.62)
and consider the action of a combination of these operators on a wave function
PXY(x) = —ihV (z9¢(z)) = —ihy(z) — thaVy(x) = —ihp(x) + X Py(z), (2.63)

then we can write formally

XP=PX + ih. (2.64)

To further formalize relations between operators we introduce the so-called commutator
of operators.

Definition 2.11 The commutator [ ., .] of two operators A and B is given by

[A,B] = AB — BA.

Thus we rewrite Eq. (2.64) as commutator of X and P
(X, P] = ih, (2.65)

which is part of an important theorem.

Theorem 2.3 (Canonical commutation relations)
The components of the 3—dimensional position and momentum operator are related

by

[ Xi, B =idhdy, [X, Xj] =[R,B]=0
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Properties of the commutator:

1) [A,B] = —[B,A] =[A,A]=0 (2.66)
In) [A, B] i linear in A and B (2.67)
1I) [A, B]' = [Al, Bf] (2.68)
V) [A,BC] = B[A,C]+[A,B]C (2.69)

V) [A,[B,C]]+ [B,[C,A]]+ [C,[A, B]] =0 Jacobi-identity (2.70)

VI) e¢*Be =B+ A, B]l+ 5[A, [A,B]] +--- Baker-Campbell- (2.71)
where e = Y LA" Hausdorff formula
VI) etef = ePeteld Bl and eMB = edeBe 4812 (2.72)
it [[4,B],A] = ([4,B],B] =0

2.6 Uncertainty Principle

As we have learned in Section 2.4.2 the uncertainty of an observable is the quantum
mechanical analogue of the classical standard deviation in the results of repeated mea-
surements on identically prepared objects.

2.6.1 Uncertainty Relation for Observables

The non-commutativity of two observables has profound consequences, it is deeply related
to the uncertainty of these observables. Let’s recall the deviation operator (2.59) and the
corresponding variance (2.60) then we can formulate the following theorem:

Theorem 2.4 (Uncertainty relation)
Let A and B be two observables, then the following inequality, the uncertainty
relation, is valid for all states

AAAB > 5([A, B])|

Whenever the commutator of two observables is nonvanishing, there is an uncer-
tainty of these observables.
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Proof: Let’s start by defining the following non-hermitian operator Z
A B
Z = — 4+ i— 2.
A + 1 L (2.73)
where A and B are defined in Eq. (2.59). We consider the scalar product
(Zy|Z4) = (W1 Z1Z|¢) > 0, (2.74)

which is definitely positive, Eq. (2.32), and use the definition of the adjoint operator,
Definition 2.5. Inserting operator Z, Eq. (2.73), into the scalar product and noting that
ZV = (Z")* we get

A B A B
— 1 ) > 0. .
W”(AA ZAB)(AA_+ZAB)hM'_O (2.75)
Multiplying the brackets and recalling that operators generally do not commute, gives
A? AB - BA B?
' > 0. 2.76
war * 1 aaag + agE) 2 (2.76)

Since the expectation values of A2 and B? are just the squares of the corresponding
variances, Eq. (2.60), the first and third term (each separately) give just 1. Using the

commutator we may write
oo WA Bl _  WIA=(A), B—(B)]|¢) _ . (&[4, B]lY)

= AAAB AAAD "TAAAB
(2.77)

Rewriting Eq. (2.77) we finally obtain
1
AAAB > 5 | ([A, B])| q.e.d. (2.78)

Note: Inequality (2.77) is certainly valid since the factor (—i) is compensated by the pure
imaginary scalar product (¢|[A, B]|¢¥), Eq. (2.45), due to the anti-hermiticity of the
commutator of two hermitian operators

A, B]' = [B",A"] = [B,A] = - [A, B]. (2.79)

Example: Position and momentum
Choosing in Theorem 2.3 as observables position and momentum A = X and B = P and
recalling the canonical commutation relation (2.65) we recover the uncertainty relation

we proposed in Section 1.6

AxXAP > 1 (2.80)

[\)

This inequality holds for all states, but it is saturated (it becomes an equality) for
Gaussian wave packets (see Section 2.8) and, in particular, for the Gaussian ground state
of the harmonic oscillator (see Section 5.1).
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2.6.2 Energy—Time Uncertainty

In order to derive the energy—time uncertainty relation, we need to take a closer look on
how time is treated within quantum mechanics. We know that in special relativity time
and space are treated on equal footing by introducing the notion of so-called 4-vectors,
= (ct, )", p* = (£, p)", which include both time- and space-coordinates.

In nonrelativistic quantum mechanics, however, time ¢t and space x have a different
significance. Whereas x and p are the eigenvalues of the observables X and P respec-
tively — physical quantities, for this reason — the time ¢ is only an independent variable, a
parameter. We are measuring space x and momentum p at a certain time ¢. Thus there
does not exist such a thing as a "time operator” 3, whose eigenvalues represent possible
time measurement results.

We can, however, analyze the change of a physical system within a short interval of
time. Let’s denote At as the time variation that is necessary for the system to undergo a
substantial change.

As a measure for the change of the system we calculate the derivative with respect to
time of the expectation value of some observable A(t, x, p)

d

CLA)Y = Sl Al) = (D1AIY) + (wIAlv) + (w]Ald),  (@8)

where we have used the notation ¢ = %w. Using the Schrédinger equation (Eq. 2.14)
and its complex conjugate (Eq. 2.15) we get

d

7 0
S{AY = S(O| HA = AH[p) + (9] A |v) . (2.82)

Theorem 2.5 (Time evolution of expectation value)
The time evolution of the expectation value is given by
- the commutator of the observable with the Hamiltonian
- the time evolution of the observable

F(A) = 5 {[H, A]) + (54)

Remark I: Classical analogy

There is a classical analogy to Theorem 2.5. In classical (Hamiltonian) mechanics observ-
ables are represented by functions f(p;, ¢;, t) on phase space, where p;, ¢; are the canonical
coordinates. Such functions obey the following relation:

0
d%f(pi,%t) ={f, H} + af(pu%',t)a (2.83)

BThere exists, however, the notion of a time-translation operator, which we will encounter later on.
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where H is Hamilton’s principal function and { ., . } denotes the Poisson-bracket

N rofog  of 9g
oot = ZZI {8%‘ Ip; N Opi 0q; ] (2:84)

The transition from the Poisson bracket of classical mechanics to the commutator of
quantum mechanics

(.1 = —%[.,.] (2.85)

is quite generally valid and is called Dirac’s rule. Compare, e.g., the canonical com-
mutation relations (Theorem 2.3) or the Liouville equation (see theorem 9.2) with the
corresponding classical relations.

Remark 1I: Conserved observables
We obtain a special case of Theorem 2.5 by considering observables that do not explicitly
depend on time. Then the partial derivative of the operator A with respect to time van-
ishes and the time evolution of the expectation value is determined just by the commutator
of A with the Hamiltonian H, i.e.
T4y = ([ A (2.56)

dt T h ’ ' ‘

If the commutator of observable A with Hamiltonian H vanishes its expectation value
remains constant in time, or, we may say, the observable is conserved,

d

o (A) =0 = (A) = const. (2.87)

[H,Al=0 =
Consider, for example, a free particle and its momentum P. The Hamiltonian for the free
motion is given by
- h? P2
om = 2m’

H = (2.88)

which, according to Theorem 2.3, commutes with the momentum operator P. Thus, for
free particles, momentum is a conserved quantity.

Let’s now return to the general uncertainty relation for observables (Theorem 2.4) and
assume the observable A to be explicitly independent of time'*. Choosing B = H we get

Eq. (2.86) h | d

AAAHE%H[A,H]H = 55@4)‘. (2.89)

We also formalize our statement from the beginning, that At is the time variation for a
substantial change of the observable A, by defining

This turns out to be a reasonable assumption as all practicable observables, e.g. position, momentum,
angular momentum, satisfy this condition.
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Definition 2.12 At is the time passing, while the expectation value of the observable
changes by one unit of AA

AA = |4 ()] At

Subsequently we identify AH with AFE, the uncertainty of energy, to obtain
h
AFE At > 5 (2.90)

So we find, whenever an observable changes rapidly with time (£ (A) big) At will

be small resulting in a high energy uncertainty, and vice versa. If the system remains
stable (stationary), i.e. % (A) = 0, then clearly there is no energy uncertainty at all
(the system has a “sharp” energy). Later on, we again look at this statement from the

perspective of eigenvalue equations (Chapter 4).

2.7 Ehrenfest Theorem and Virial Theorem

We want to present two theorems that link quantum mechanics to classical mechanics.

2.7.1 Ehrenfest Theorem

Classical Newtonian mechanics follows from quantum mechanics in the sense of Ehrenfest’s
theorem, which we will derive in the following. We start by considering Theorem 2.5, the
theorem for the time evolution of the expectation value of an operator. As operators we
choose the position and momentum whose partial time-derivatives are vanishing. Thus
we are left with the calculation of the corresponding commutators with the Hamiltonian
of a particle in an exterior potential V(&)

—

_h2 P2
H = %A + V(%) = om + V(Z), (2.91)
1 P, P, P,
[H, Xi] = — [P?, Xi] = — [P, Xi] + [P, Xi] =— = —ih—, (2.92)
2m 2M e~ — —— 2M m
—ih —ih
——
(VV)+VV

In Eq. (2.92) we have used property (2.69) of a commutator and the canonical commuta-
tion relations (Theorem 2.3).

We now consider Theorem 2.5 and introduce a (conservative) force F = —ﬁV(f) to
get
d , - |
—(X) = —(P 2.94
S{X) = (P (29)
d — — —
—(P) = —(VV) = (F). (2.95)
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When combining both equations, Eq. (2.94) and Eq. (2.95), we can formulate the following
theorem:

Theorem 2.6 (Ehrenfest theorem)
The classical equations of motion are valid for the mean values
of the operators.

mis (X) = —(VV) = (F)

Remark I: Planck’s constant A does not occur in the Ehrenfest theorem, which is
already a sign for the classical nature of the statement.

Remark II: For the classical equation of motion to be valid also for the mean value
(©), we have to assume that

(F(@)) = F(&)). (2.96)

This condition is satisfied if the second and all higher derivatives of the force vanish, i.e.
V*F =0, n = 2,3,...; It is the case, e.g., for the free motion, the harmonic oscillator,
and approximately for all slow changing forces F'.

2.7.2 Virial Theorem

The virial theorem is an important theorem in statistical mechanics, which relates the
mean value of the kinetic energy of N particles to the one of the gradient of their potential

N
2 <T >timeaverage - <Z ﬁlv : fl> s (297)
=1

time average

where 7;, V; denote the position vector and the gradient of the i-th particle respectively.
We can derive such a relation also within quantum mechanics.

We again start from Theorem 2.5 and choose as operator X P. Since the partial
derivative with respect to time of X P vanishes we only have to consider the commutator
with the Hamiltonian H (given by Eq. (2.91))

(7, xP] "2 xim P+ H,X]P =
P2
Eq. (292),(298) = =  XihVV(r) - ih— =

— 72_1 (QT — X%v(@) , (2.98)
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where we denoted the kinetic energy by T and replaced the nabla operator by the total
derivative. Thus we conclude that

LIXPY = 2(T) — (X Lv)) (2.99)
— = — — V(x)) . :
dt dx
Finally we assume stationary states which satisfy!® % (XP) = 0 and end up with the
virial theorem.

Theorem 2.7 (Virial theorem) 2(T) = (X % V(x))

Example:  Harmonic oscillator
For the (one-dimensional) harmonic oscillator the potential energy is given by

2,.2 d
mwa = =V = ms. (2.100)

Then the virial theorem tells us that

v:

mw?z?

) = (T) =(V). (2.101)

2.8 Time Evolution of the Wave Packet

In this section we want to investigate how we can relate the wave functions with the
moving particles they represent and what conceptual insights arise from considering the
time evolution.

2.8.1 Motion of Plane Waves and Wave Packets

Plane waves:
Let’s now consider the motion associated with a plane wave (remember Eq. (2.1))

Y (t,x) = ke — exp (% (px — Et)> : (2.102)

which is a solution of the free Schrodinger equation and we restrict the wave (and thus
the particle) to a finite area to overcome difficulties with the normalization.

A fixed point on the wave (e.g., the maximum) corresponds to a fixed value of the
argument in the exponential, i.e. x + vt = constant. Let us calculate this velocity v,

13This condition can also be regarded as a form of Hamilton’s principle, since the product of position
and momentum has the dimension of an action, whose variation is required to vanish.
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which is the phase velocity 7, the propagation speed of the points of constant phase of
the plane wave, see Fig. 2.3

hw 21 1
w  Tw rr_ P _ 5 Vlass - (2.103)

" 2mp  2m

E
Uphase = -
ph k Rk p
We see that phase velocity of a plane wave travels at half the speed of the particle it should
represent. Thus identifying the phase velocity with the velocity of the (classical) particle
is not very satisfactory. However, the general solution of the time-dependent Schrodinger

equation is a superposition of plane waves, a wave packet, and there the situation changes.

Y (t,2)

A Upbhase

Figure 2.3: Phase velocity of a plane wave: points of constant phase, e.g., the wave crest
moves with constant velocity in the x-direction.

Wave packets:
We have already encountered the wave packet in this chapter (recall Eq. (2.2)) as a solution
of the Schrodinger equation

V(t,x) = | ——1 (k) ekt (2.104)

Mathematically, it is the Fourier transform of a distribution v (k) in k-space, modulated
with an oscillation exp (—iwt). Thus it is just the superposition of plane waves, corre-
sponding to different values of k, weighted with a function ) (k) /v/2m. Then the inverse
Fourier transform at t = 0 has to be of the form

d(k) = %w(o,x) ik (2.105)

Generally, we expect dispersion, meaning that waves of different frequencies w(k) travel
at different speeds, i.e., they have different phase velocities. The dispersion relation, the
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relation between w and k is given by

hk?
k) = —. 2.106
wlk) = 5 (2.106)
Thus a phase velocity cannot represent the motion of the whole wave packet and we

need to find another type of velocity. It is the group velocity vgoup, as illustrated in
Fig. 2.4.

Vgroup

» T

Figure 2.4: Wave packet: the phase velocities of different constituent plane waves suf-
fer from dispersion whereas the group velocity accurately represents the motion of the
enveloping function, i.e. the velocity of the peak.

Theorem 2.8 (Group velocity of wave packets) )
Quantum mechanical wave packets V(t,x), whose Fourier transform (k) is
localized around a certain value ko, move with the group velocity

dw _
Ugroup — %‘k:ko - 2Uphase
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Proof:

The requirement of localization in the k-space can easily be fulfilled by a Gaussian distri-

bution, like e.g.

o?(k — ko)?
2

The dispersion relation, Eq. (2.106) we can expand as a Taylor series at kg

Y(k) = const. X exp (— ). (2.107)

dw
w(k) = w(ko) + T

(k‘ — ]{30) + o = wo + wé(k — /{?0), (2108)

k=ko

where we have used the notation wy = w(ko), w} = and we may just keep the

a
dk | k=ko’
linear term due to the localized form of the packet in k-space, Eq. (2.107). With a change

of variables k — k — ko = k we can write the Fourier integral from Eq. (2.104) as

¥ (t,x) = b (k + ko) exp [i ((k + ko)z — (wo + wgk)t)] . (2.109)

dk
V2T
By examining the form of Eq. (2.109) at different times, e.g. at t =0 and ¢ > 0, we get

Y(t=02) = % b (k + ko) exp (i(k + ko)), (2.110)

¢ (t > 0, x) =~ ei(kowé—wO)t dk

ez

Except for the shift © — = —wit the integrals in (2.110) and (2.111) are identical, thus

b (k + ko) exp (i(k + ko) (z — wit)) . (2.111)

Y (t,z) =2 ekowowoltyy (¢ 3 — lt) . (2.112)

We conclude that after some time the wave packet propagated away from position x with
the velocity wj = vgronp- The phasefactor exp (i(kowy — wo)t) in front of the integral can be
ignored, since it will vanish in |¢|?. Finally, we simply calculate vgoup, using the dispersion
relation (2.106) and find

dw(k d hk? hk P
d;) = %% = E = E = QUphase qed (2113)

/
Ugroup = Wy =

2.8.2 Spreading of the Free Wave Packet

After having studied the motion of the wave packet, we now take a closer look at the
localization of the particle associated with the wave packet. We again start from the
general wave packet, from Eq. (2.104), but we use momentum and energy instead of wave
number and frequency as variables

oo

o) = [ i) e (,%@x—Et)). (2.114)

St
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We choose for the Fourier transform ) (p) a Gaussian distribution (on p-space)
1/2 2 2
2 g o°(p — po)
_ _ 2.11
¥(p) (ﬁh) exp < 577 ) , (2.115)
N

which ensures that, at an initial time ¢ = 0, the wave packet is well localized (in z-space),

i.e. o is small'®. We have also assumed that the Gaussian is normalized to one, which

uniquely determines the normalization constant N =, / ﬁ

We then calculate the wave packet (Eq. 2.114)

o0

U (t,x) = \/%L”L /dp exp (—W) exp (% (px — Et)> : (2.116)

Using F = % and the abbreviations
a:= ;—; + iﬁi’ b= 0227?20 + i%, c:= 022752(2) (2.117)

we get .
Y (t,z) = \/% /dp exp <—a( —§>2+§—c). (2.118)

With a change of variables, y = p — %, and using the

o0

Gauss formula /dy e~ = z, (2.119)
a

—0o0

we arrive at a simple form for the Gaussian wave packet

N b?
NoTT exp | ——c). (2.120)

We are now interested in the probability density p(t, ) = |¢(t, z)|* of this wave packet

[ (t2)* = ]QV—; |710| exp <2Re (bg — c)) : (2.121)

Thus we calculate the constituent parts from the abbreviations a, b and c¢ step by step

P = a*a = (Re(a))> + (Im(a))® = (;‘—;)Q + (ﬁ)z - <;—;)2 1+ A7,
(2.122)

16The width of the p-space distribution on the other hand is proportional to 1/o, which means that
the momentum spread is high at ¢t = 0.

’g/}(t,l‘) =
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where A = miUQt, and using v = 2 = w4, we finally have
b? bZa* — clal? (x — vt)?
9 Z -9 S ik I I 2.12
Ro(me) = me () - i (2129

Altogether we find the following form for the probability density of the Gaussian

wave packet as a function of time

s 1 B (z — vt)?
v ()" = T i eXp( —02(1+A2)). (2.124)

‘7 (f‘ I) ‘2 Ugroup

v 'U‘mup
gro
>

)
Vgroup

[o(ty, z) [

a(t1) \
(t1)

20(0) Zo xo(t2)

Figure 2.5: Spreading of the wave packet: As time passes, the envelope of the wave packet
moves in the z-direction with velocity vgroup and it gets more and more delocalized. Here

o(t) :==o+/1+ A%(t)

Result:

e The wave packet stays a Gaussian for all times, but its width, measured by ov/1 + A2,
increases with time, since A oc t. Thus the localizability of the particle represented
by the wave packet decreases over time, which is termed the spreading of the
wave packet, see Fig. 2.5.

e The maximum of the wave packet moves with vgoup = % = 2 = Velass -

e The constituent plane waves of the superposition propagate with vphase = %vgroup.



Chapter 3

Mathematical Formalism of
Quantum Mechanics

3.1 Hilbert Space

To gain a deeper understanding of quantum mechanics, we will need a more solid math-
ematical basis for our discussion. This we achieve by studying more thoroughly the
structure of the space that underlies our physical objects, which as so often, is a vector
space, the Hilbert space.

Definition 3.1 A Hzilbert space is a finite- or infinite-dimensional, linear vector space
with scalar product in C.

The Hilbert space provides, so to speak, the playground for our analysis. In analogy
to a classical phase space, the elements of the vector space, the vectors, are our possible
physical states. But the physical quantities we want to measure, the observables, are
now operators acting on the vectors. As mentioned in Definition 3.1, Hilbert spaces can
be finite- or infinite-dimensional, as opposed to classical phase spaces (which are always
6n-dimensional, where n is the particle number). We shall therefore investigate those two
cases separately.

3.1.1 Finite—Dimensional Hilbert Spaces

In finite dimensions the vectors of a Hilbert space, denoted by H, and the corresponding
scalar products differ from the standard Euklidean case only by the choice of complex
quantities C instead of real ones R. It means that for vectors z,y € H

T = E Y y = ; ) xl? y17 E C? (3'1)
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where H represents the n-dimensional Hilbert space under consideration, the scalar prod-
uct can be written as

yl

n
vy =my = (z|y) = (z1, ,20) | :in*yie(c. (3.2)

Yo i=1
We have tried here to incorporate many different notations that are commonly used
for scalar products, including the Einstein summation convention, which simply means
that whenever an upper and a lower index are identical, the product is summed over.
Whenever a covector!, whose components? x; = z'* are the complex conjugates of the
corresponding vector components, is acting on a vector, with components 3!, from the left

side it yields a complex number. From the above form (3.2) of the scalar product we can
immediately infer the following property

Ty = (ya)". (3.3)

Thus the norm ||z|| of a vector is guaranteed to be real and positive

n 1/2
|z|| = Vo = (z;2)Y? = (le* xi) € Roy . (3.4)
i=1

Finally, the operators on this Hilbert space map one vector into another, i.e., they are
linear transformations on the vector space, that can be represented by matrices.

! Ay o Ag yl

3.1.2 Infinite—Dimensional Hilbert Spaces

In infinite dimensions the vector space is generalized to a function space of complex valued
functions, which now take the role of the state vectors®. The scalar product is then again
defined as in Sec. 2.3.2

oo

<¢w>:§/fmwww@m (3.6)

—0o0

LA covector is a vector of the dual vectorspace which is denoted by a row- instead of a column-vector
and by lower (covariant) instead of upper (contravariant) indices for its components. The dual vectorspace
is the space of linear functionals over the vectorspace, which means that in the sense of the scalar product,
every vector can be mapped to a (complex) number by the action of a covector.

2We assume here that the basis of the covectorspace is the dual basis to our original (vectorspace)
basis.

3They still are vectors in the abstract sense that they are elements of a vector space, but it might be
misleading to view them as some sort of “arrows”
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where, analogously to the finite-dimensional case, (1| is a covecter (or linear functional)
acting on the vector |¢) , which we will discuss in Sec. 3.2. The scalar product has the
properties stated in Eq. (2.29) — (2.32), from which we can see that the norm of the (state)
vectors, which we assume to be square integrable (and in addition normalized to one),
satisfies

ol = {w1w) = [delp@P = 1 < oo. 1)
The operators on this Hilbert space then map one state into the other
o) = Aly) . (3.8)

Another important property of the Hilbert space in infinite dimensions is its complete-
ness, which we will define in the following.

Hilbert space is a complete function space with scalar product in C.

Definition 3.2 A (function) space is called complete if every Cauchy-sequence
has a limit in the space.

Definition 3.3 A sequence {1} is a Cauchy sequence if Ve € Ry
dN € N such that for all natural numbers n,m > N:

||¢n - me <E€.

This means that every sequence whose elements get even closer to each other as the
sequence progresses — i.e. a Cauchy sequence — has a limit in the space, i.e., the space
includes all the limits of its converging sequences and is therefore called complete. Such
a property can be visualized as a space not missing any points. It guarantees that every
function can be expanded with respect to the complete orthonormal basis chosen. Take
for example the basis of plane waves

{\/%e’“} : (3.9)

then every function f(x) can® be expanded as

1 ¢ ik r _L X xe—ix
fmi@meammwﬂquk,<w>

which is exactly the Fourier transformation of the function.

4if the following integral exists
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3.2 Dirac Notation

In 1930 Paul Adrian Maurice Dirac introduced in his famous book “The principles of
Quantum Mechanics” the so-called “bra-ket” notation® which has proven very useful,
easy to handle, and became therefore the standard notation in quantum mechanics. Let’s
discuss it in more detail.

We have already explicitly formulated the scalar product of vectors in Hilbert spaces,
see Eq. (3.2) and Eq. (3.6), and we used already the notation of “bra” (.| and “ket” |.).
These notions can now be used independently of each other (and of the scalar product)
as vectors and covectors of a Hilbert space and its dual space. We will therefore denote

the vectors of a Hilbert space by the ket
“ket” ) € H. (3.11)

Since the Hilbert space H is a vector space it has a dual vector space H*, which is also
called the space of linear functionals over the vector space. This means that the covectors
are maps from the vector space into the associated field (C in this case), which here is
exactly provided by the “bra”. So the “bra”-vectors are the elements of the dual Hilbert

space’

“bra” (@] € H*. (3.12)

The (anti-)isomorphism of the Hilbert space and its dual space guarantees, that we can
write down the scalar product as “bra” acting on “ket” as we are used to. Also the notation
is quite unambiguous, since to every vector | ) there is exactly one dual vector (v | and
the bidual vector is again [1)7. So the covectors have a one-to-one correspondence to
vectors, which are our physical states. Thus we can interpret the scalar product, the
“bra-ket”

(6 |0) = / dx ¢*(z) (x) (3.13)

as a transition amplitude from the physical state 1) to (¢ |. Technically, we turn a
vector into a covector by hermitian conjugation

)" = (v]. (3.14)

Thus, naturally, the operators on the Hilbert space are represented on the dual space
by their adjoint operator (for hermitian operators these are identical)

Aly)y = (p] A (3.15)

5Also Dirac’s delta-function was introduced by him in the same book.

6This formulation is a little bit sloppy, but it suffices for this course. The interested reader might look
up Riesz’s representation theorem, which gives the mathematically exact justification.

"The last property is called reflexivity of the Hilbert space.
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If two operators are acting on a vector, their action on the dual vector is reversed

AB|¢y) — (¢]|BTAT. (3.16)

3.3 Projection Operators

The insights from the last section now allow us to try out several combinations of vectors,
covectors and operators, for example,

AB ) (o] C|®) . (3.17)

Expression (3.17) can be interpreted in different ways, either the operators B and A
act successively on the vector | 1) multiplied by the scalar (¢ | C' | ® ), or the vector | D)
is acted upon by the operator A B |9 ) (¢| C. In this last case, however, we see that we
can construct operators with the combination of ket and bra, called the exterior product

operator: D = |1) (| adjoint operator: D := |¢) (¢ ] . (3.18)

If the vectors are now chosen to be their dual vectors respectively, we get an important

class of operators, the projection operators

Po=1y)(¢], (3.19)

with the property

P* = |y) (¢ [v){v] =|v)(d]| = P. (3.20)

3.3.1 Projectors for Discrete Spectra

The projection operators are a very important tool to expand a vector in a complete
orthonormal basis |1, ). We can express each vector of the Hilbert space as a linear

combination of the basis vectors with complex numbers ¢,

W>:ZCan>- (3'21)

By applying (¢, | on both sides of Eq. (3.21) we get

(Y |¥) =D o (Um [Un) - (3.22)

n
6mn

Thus the coefficients ¢, are given by

th = (Un V), (3.23)
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i.e. the transition amplitudes of state |1 ) to states | ¢y ). If we now insert Eq. (3.23) into
Eq. (3.21)
[0) = D () (W] ¥) (3.24)
- T

we see that for a complete set of orthonormal basis vectors the orthogonal projectors
satisfy the following completeness relation

DoPe=> lva) (| = 1. (3.25)

A projection operator P, acting on an arbitrary state |t ) will thus project the state
to the state |1, ) with a probability of | (¢, |¢) |>. Summarizing, the P, satisfy

PPy = 6y and P2 = P,. (3.26)

Physically, this represents the class of projective measurements such as the measure-
ment of the polarization of light.

Example: Polarization filter
Consider a photon, linearly polarized along the 45°-plane (with respect to the horizontal
plane). We can then describe its polarization by a state vector

1
W)ZE(\H%L!V)% (3.27)

where | H) and | V') are the basis vectors of a 2-dimensional Hilbert space corresponding
to horizontal and vertical polarization respectively. If we perform a measurement of
the polarization by sending the photon through a polarization filter, e.g. in horizontal
orientation, we get the measurement outcome by calculating the expectation value of the
horizontal projector | H) ( H |. Lets first calculate the projection onto | H )

|H><H|w>=% \H)(H [H) + [H)(H |V) Y. (329)

1 0

1
= —|H
¥k
then we apply (4 | onto the left side to obtain the expectation value

(ol CH ) = 5 | (HLHY + (VI E) | =5 (3.29)

It’s interesting to note that the expectation value of the projector is exactly the squared
transition amplitude ( H |1 ) — the transition probability. We conclude that the proba-
bility for the photon to pass the polarization filter is %
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3.3.2 Projectors for Continuous Spectra

Up to now we have only considered operators with discrete spectra, but we also have to
explore projectors on, e.g., position eigenfunctions. In order to do so, we first change our
notation. When working with the vectors of a system — usually, a complete orthonormal
system (CONS) — the Dirac formalism allows a simplification in the notation, we may use
just the label identifying the vector in the CONS; e.g.,

() = An) o fde) = ). (3.30)

This labeling can be applied for vectors corresponding to a discrete spectrum n as well as
to a continuous spectrum &, as exemplified in Eq. (3.30).

Position eigenvectors:
Let us assume vector | £ ) is a position eigenvector, this means

X&) =¢18), (3.31)

where X is the position operator and £ denotes the eigenvalue corresponding to the
eigenvector |£). We will discuss spectra of operators and eigenvalue equations in more
detail in Sec. 3.4. Projection operators are constructed in the same way as before by
exterior multiplication but the corresponding properties have to be modified. The sum in
the completeness relation needs to be replaced by an integral

/d5|s><s| ~1, (3.32)

and the orthogonality relation involves the Dirac delta function

(§"1€) =0 =¢). (3.33)
Now we can cast a further view on the wave functions of a Hilbert space by defining
P(x) = (z|y)  ¥(2) = (¢]x) (3.34)

and analogously for the basis vectors of any discrete CONS
Un(x) = (x|n) ,  Pple) = (n]x). (3.35)

Egs. (3.34) and (3.35) thus provide the basis-dependent notation — the wave function — of
the abstract vector. That means, the abstract vector in the z-representation or the vector
with respect to the chosen |x) basis. While the ket |1¢) denotes the basis-independent
representation of the vector. The action of operators on the wave function is, however,
independent of the basis as the operators only act on the ket. Therefore, equations such
as Eq. (3.8) actually should be read as

Ad(z) = (x| Afy) = (z]9), (3.36)

but keeping in mind that the operators act only on the ket we omit the bra (z|.
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Let’s consider now as wavefunction, the eigenfunction 1¢(x) of position operator X

be(x) = (z]€) = oz =€), (3.37)

which is, as expected for a position eigenfunction, perfectly localized. Technically, we need
to keep in mind, that such an object is not square-integrable and thus not an element
of the Hilbert space®, but there are methods to deal with that problem, which shouldn’t
bother us at the moment.

Finally we can insert a CONS into Eq. (3.37) to gain the completeness relation of the
wave functions in x-representation.

(zla’) = (x|L]z’) = (x| Y [n){n||a") = (e|n){n]z') =

n

= Y wnle) i) = 8z —a). (3.38)

Momentum eigenvectors:
Using again the notation of Eq. (3.30) we now write | p) instead of |, ) in the eigenvalue
equation for the momentum operator

Plp)=nplp). (3.39)
To be more precise we should write
Piy = (x| Plp) =(z|plp), (3.40)

then we can insert the z-representation of the momentum operator — the quantum me-
chanical correspondence (2.8) — to calculate v,

—ihV ¢, = piy . (3.41)
Here 1, depends on z, ¢, = 1,(x), and we have to solve an ordinary differential equation
L d dyp l
—tho -ty = Py = /w—p = ppdu
p
Invy, = %px + const. = 1, = const. X e/l (3.42)

The normalization of the wave function determines the constant explicitly and we can
write the momentum eigenstate in the z-representation — the momentum eigenfunction —

as
1

(z[p) = Pp() = Vot

8This awkwardness can be overcome by redefining the structure of the underlying Hilbert space, which
is then called the rigged Hilbert space (or Gelfand triple), but this considerations need not concern us
here.

ere/h (3.43)
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Using the completeness relation for position states, Eq (3.32), and the one for momen-
tum eigenstates

/dp|p><p| ~1, (3.44)

we can prove the orthogonality property of the momentum and position eigenstates

(p'|p) = <p/!1l|p>—(p’l/d$|w><x\|p>—/d$<p’|$><x|p>—

:/dmp() x:%/xexp(_ >exp(%x):

d p
—~ % dr exp (%(p - p )x) = d(p—p"), (3.45)

(z'|2) = (a'|1|2) = xr/dprp (p| |z) =/dp V(pla) =
1

- /dp Pp(a’) Yi(x) = 7 dp exp (”;f) exp(_wx) =

_ th dp exp (;L( = :L“)p) — S — ). (3.46)

Expansion into a CONS:
Complete sets of orthonormal vectors are needed to expand a given vector of the Hilbert
space. We start by expanding the ket

) = /dp|p><p|w> - /dpwp) D) . (3.47)

where we have used ¥ (p) = (p|¢) in total analogy to Eq. (3.34). The notation of the
tilde for the wave function ¥ (p) explains itself once we calculate ¢( )

b(z) = (z|v) = /W@) (z|p) = /czpwp)wp(

d zp:t/h )
/_27r pd(p
(3.48)

We recognize Eq. (3.48) as the Fourier transformation, i.e., the wave functions of position
and of momentum space are related to each other by a Fourier transformation. It often
helps to simplify complicated calculations by transforming between those spaces.

3.4 Eigenvectors and Spectral Theorem

3.4.1 Eigenvalue Equation

Eigenvalue equations play an important role in quantum mechanics. Remember that
possible measurement outcomes are given by the eigenvalues of hermitian operators. This
means, performing a measurement of an observable leaves? the system in an eigenstate of

9The system stays in that particular state after the measurement, unless the state is changed by other
influences (e.g. interactions, decoherence).
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the corresponding operator. An arbitrary eigenvalue equation is of the form
A7) =N1i), (3.49)

where A is a linear (hermitian if we consider observables) operator with eigenvalues );
and corresponding eigenvectors (eigenstates) | ).

Let’s consider a finite-dimensional Hilbert space, e.g. 2—dimensional, and an operator

A acting on it. Since we are in 2 dimensions we can represent A by a 2 x 2 matrix and
use the following identity

(A—=XN1)|j) =0, (3.50)

which is satisfied if the determinant of the operator acting on |j) vanishes
det (A — \1) = 0. (3.51)

The determinant of Eq. (3.51) provides the so-called characteristic polynomial whose
roots yield the possible eigenvalues of A. Making the ansatz

i) = (Z) . g = (;) . abedeC (3.52)

for the two (orthogonal) eigenvectors |i) and |j) and inserting them into the eigenvalue
equation Eq. (3.49) gives two matrix equations, each for the pairs a,b and ¢,d. Two ad-
ditional equations can be gained from the normalization of the vectors, which determines
all constants completely

(i]i)y =(jlj) =1 (3.53)
= lal* + b|* = 1, lc]? + |d|* = 1. (3.54)

3.4.2 Spectral Theorem

The spectral theorem gives us a precise formulation of the relation between an operator
and its eigenvalues.

Definition 3.4 A linear operator A is called normal, if ATA = A AT,

Theorem 3.1 (Spectral theorem)
Every normal operator A can be expanded in its spectrum {\} by projection

operators ' '
A= Nli)(J]
J
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The theorem can also be made more specific for certain subclasses of operators, like her-
mitian or bounded/unbounded operators, but our formulation will suffice for this course.
An important feature of the theorem, however, is its applicability to functions of operators

f(A) = Zf(%-)m(jl : (3.55)

Example:
Consider a two-dimensional Hilbert space with an operator!® we will call o, represented

by the matrix
01
Oy = (1 0) . (3.56)

We will proceed as mentioned in Section 3.4.1 to calculate the eigenvalues and eigenvectors
of this matrix:

-2 1

det(oy — M) = ‘ X _A‘ — X 1=0 = A=zl (3.57)
G0)G) =n()=() = o= (3.58)

2 2 1
la*+ =1 = a=0b= ik (3.59)

<(1) (1)) @ - (ccl) T (fz) = o= (3.60)

cP+dP=1 = c=-d=—. (3.61)

Thus we find for the eigenvectors and for the corresponding eigenvalue equations

|+>:i(i> ox |+) =+ [+), (3.62)

=5 (4) mlm=-1e (3.65)

To construct the projectors onto |+ ) and | —) we first take a look at the exterior
product for arbitrary components. We remember from Eq. (3.2) that the components of
the covector are the complex conjugates of the ordinary vector components and that the
scalar product is constructed by multiplying a row-vector with column-vector. Here the
order is reversed and we get a matrix instead of a scalar

_ () (e ey (101 )
witel = (30) o) = (D8 098). (3.00)

10This operator is one of the Pauli matrices which occur as spin observable.
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Specifically, for the projection operators P, and P_ we find

o=l =5 (1) a0 =35(1 1) (3.65)

P_:|—>(—|:%(_11) (1 —1):%(_11 _11) (3.66)

The completeness and orthogonality relations then read
P+ P =1, P P =0, (3.67)

and the spectral decomposition of oy (according to Theorem 3.1) is given by
ox =M Py + P =P, — P_. (3.68)

We can also calculate functions of o, with help of the spectral theorem, like e.g. the
exponential of the matrix

—~

>%>> | (3.69)

1[5 is - is o -
e'2 +e'2 ez —e'2 cos (5) —1 sin
=3 Qo Qo Qo Qo a

2 \e72 — g2 72 4 (2 —i sin(§) cos (

It corresponds to the rotation of a particle with spin % around the z-axis by an angle .

[NJ1]

3.5 Résumé: Axioms and Physical Interpretation

1. The quantum state of a system is described by the wave function ¥ (¢,z). The
probability of finding the particle in the interval [x, x+dz] is supplied by [ (¢, z)|*dz.

2. The time evolution of the quantum state is given by the
Schrédinger equation Zha w(t xr) = Hy(t,x),

where H denotes the Hamilton operator: H = —%A + V(x).

3. Physical quantities — observables — like e.g. F, P, or X, are represented by her-
mitian operators A" = A, having real eigenvalues. The eigenvalues a,, determined
by the

eigenvalue equation A \n} = ay ‘TL} ,

correspond to the possible measurement outcomes.
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4. Generally, a quantum state can be written as an
expansion into a CONS | ¢> = Z Cn | n) ,
n

where the coefficients ¢, = (n |1) express the projections of the state |1) onto
the eigenstates |n ).

5. Experimentally, the expectation value of an observable is obtained by measuring
a large number of identically prepared systems, each measurement provides — at
random ! — a certain value a,, which will be averaged to a mean value.

Theoretically, the mean value (4 ), of an observable A in the quantum state |¢) is
defined by

oo
expectation value  ( A >1/J = f dx *(t,x) AY(t, x),
—00
and expressed in terms of eigenvalues:
expectation value <A >1/J = <¢| A W> = Z ‘Cn|2 Ay .
n

6. The probability for finding an eigenvalue a, in the quantum state |1 ) is given by
len|?> = | (n|9) 2. After the measurement of A providing the value a, the system
remains in an eigenstate | n) — projection postulate.

7. The variances of the expectation values of operators satisfy the

uncertainty relation AAAB > %| < [A, B] > ‘ )

where (AA)2 = (A2) — (A)?.
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Chapter 4

Time—Independent Schrodinger
Equation

4.1 Stationary States

We consider again the time dependent Schrodinger equation (Prop. 2.1)

ih%@b(t,x) = (—Qh—mA + V(x)) Y(t,z)=Hy(tz), (4.1)

where the potential in the Hamiltonian is assumed to be time independent V = V(z) .
We calculate the solutions of this equation by using the method of separation of variables,
i.e. we make the following ansatz for the solution (¢, x):

U(t,x) = () f(t) (4.2)

and insert it into the time dependent Schrodinger equation, Eq. (4.1),

o) 20— BT jiy s viowort) | s
Rl GO R 1 P
ih 0 di om O(@) da? + V(z). (4.3)

Since now the left hand side in Eq. (4.3) is only dependent on ¢ and the right hand
side only on x, both sides must be equal to a constant, which we will call £, and we can
thus solve each side independently. The left side yields

L1 df(t) df i
h———+=F — = ——Edt
RO T T h
= In(f) = —%Et + const. = f = const.e Pt/ (4.4)

The constant in Eq. (4.4) will later on be absorbed into ¥ (x).

69
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Then multiplying the right side of Eq. (4.3) with ¢ (x) we get

1 d2¢(x) B K2 dzw(x) B
~om 3] do? + V() = E "o da? v+ V(x)w(xz = E¢(x). (4.5)
H ()

The operators on the left express the Hamiltonian H acting on v (x), which represents
the time independent Schrodinger equation.

Theorem 4.1 (Time-independent Schrédinger equation)

Hy(z) = Ei(x)

where H = —%A + V(z) is the Hamiltonian
Definition 4.1 A state is called stationary, if it is represented by the wave function

bit,a) = () e BN

For such states the probability density is time independent

Wt 2)] = (@) p(a) 2 e P = [y (). (4.6)

The expectation values of observables A(X, P) are time independent as well

; 0 ,
(AX,P)) = /dxf/)*(x) e Bt Az, —m%)?/f(ﬂ?) o= Bt/
0
Remark I: As a consequence, the eigenvalues of the Hamiltonian, which are the

possible energy levels of the system, are clearly time independent.
To see it, just take H(X, P) instead of A(X,P) in Eq. (4.7) and use the time-
independent Schrodinger equation (Theorem 4.1)

(H(X.P)) = / de ¢ () H (z) = / dzy*(z) Ep(z) = E / dr gt (2) (z) . (48)

~
<00
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Remark II: The normalization of the wavefunction will restrict the possible values
of the constant FE, the energy of the system, in the Schrodinger equation.

Two more interesting features about stationary states and the corresponding energies
will be formulated here in the form of two lemmata, whose proofs we will leave as exercises.

Lemma 4.1 For mnormalizable solutions 1 (x) of the Schrédinger
equation the energy E must be real, E € R.

Lemma 4.2 Solutions (x) of the time-independent Schridinger
equation can always be chosen to be real.

Definition 4.2 The parity operator P acting on a function f(x)
changes the sign of its argument:

Pflx) = f(-x).

We conclude that even and odd functions are eigenfunctions of the parity operator

’Pl/}even - +77Z)even ,Pwodd = _¢0dda (49>

which we will use in the following theorem that will be helpful later on.

Theorem 4.2
For a symmetric potential V(z) = V(—x) a basis of states can be chosen,
that consists entirely of even and odd functions.

Yeven(7) = () + P(=2) Yoaa(®) = P(x) — Y(=1)

The proof for this theorem will be left as an exercise too.
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4.2 Schrodinger Equation as Eigenvalue Equation

A subject concerning the time-independent Schrodinger equation we have not yet touched
is its interpretation as an eigenvalue equation. Clearly, from its form we see that stationary
states |1 ) are eigenvectors/eigenfunctions of the Hamiltonian H with eigenvalues

H|p) =E|¢). (4.10)

It implies the exact determination of the energy E. A stationary state has a precisely
defined energy. Calculating the expectation value of the Hamiltonian for a stationary
system just gives

(H) = (W[ H[Y) = (¢ E[¢) = EW|Y) = E. (4.11)

Consequently, there is no energy uncertainty AFE for these states

AE:AH:\/(H2>—(H>2:\/E2—E2:0. (4.12)

Generally eigenvalue equations for linear operators take the form

Alo) =al9o), (4.13)

where a is an eigenvalue of the linear operator A with corresponding eigenvector |¢).
For hermitian operators there exist important statements about their eigenvalues and
eigenfunctions.

Theorem 4.3
The eigenvalues of hermitian operators are real and the eigenvectors corre-
sponding to different eigenvalues are orthogonal.

The proof is easy and again left as an exercise. The above theorem is vitally important
for the spectrum {E,} of the Hamiltonian, which is thereby guaranteed to be real

H [pn) = En [tn) . (4.14)

Using our notation |%,) = |n) the orthogonality and completeness relations (re-
member equations (3.25) and (3.26)) can be written as

(n|m) = dum > n)(n|=1. (4.15)
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4.3 Expansion into Stationary States

Using the spectral theorem (Theorem 3.1) we can then expand a given state into a com-
plete orthonormal system of energy eigenstates |n) exactly as outlined in Section 3.3.1

[¥) =) eln) o= (nly). (4.16)

By inserting a continous CONS of position eigenstates (Eq. (3.32)) into the transition
amplidute the expansion coefficients ¢, can be rewritten as

cn:<n|w>:/dx<n|x><x|¢>= /dw;;(x)wx). (4.17)

We can now extend the expansion from the time independent case to the time depen-
dent one. We just remember the time dependent Schrédinger equation

0
with a particular solution 4
Un(t, ) = hy(z) e Ent/h (4.19)
The general solution is then a superposition of particular solutions
Ut ) = cn Pulz)e PN (4.20)

n

The expansion coefficients can easily be computed by setting ¢t = 0 and taking the scalar
product with ¢y, (x)

/ dz () $(0,2) = / dz Y3, (1) D o tha(x) 0

1

(G [0(E=0)) = Y e /dw;m bu(z) |

6mn

Thus the expansion coefficients are given by

tn = (U [Y(t=0)) . (4.21)

Physical interpretation of the expansion coefficients:
Let’s consider an observable A with eigenstates 1, and eigenvalues a,,

Aln) = an ) . (4.22)

If a system is in an eigenstate of this observable the expectation value (in this state) is
equal to the corresponding eigenvalue

<A>:<¢H|A|¢n>:an<¢n|¢n>:an‘ (423>
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Thus a measurement of the observable always produces the result a, which implies
that the uncertainty of the observable vanishes for this state AA = 0. Furthermore the
measurement leaves the state unchanged, the system remains in the eigenstate

A

) — ). (4.24)

If the system, however, is in a general state |t ), which is a superposition of eigenstates,
the expectation value is given by the sum of all eigenvalues, weighted with the modulus
squared of the expansion coefficients

(A4) = (Y] Afy) = ZZ(Cm¢m|A|Cn¢n>

« 2
- Chy Cn Qn m n/ — Cn| Qn.
zn: ; (¢ 5\ Un) zn: I
(4.25)
The expansion coefficients ¢, = (1, |1 ) can thus be regarded as a probability am-

plitude for the transition from a state v to an eigenstate 1, when the corresponding
observable is measured. The actual transition probability is given by its modulus squared
len|? = the probability for measuring the result a, — which also obeys

D el = 1. (4.26)

So a measurement of an observable in a general state changes the state to one of the
eigenstates of the observable. This process is often called the reduction or collaps of the
wave function

A

1Y) = [a) - (4.27)

4.4 Infinite Potential Well

Our goal in the next sections is to calculate the energy eigenvalues and eigenfunctions for
several Hamiltonians, i.e. for several potentials. Let us begin with the infinite potential
well, represented by the potential V(x), as illustrated in Fig. 4.1, such that

V(z) = {O(L for xeelse[o’ L] (4.28)

This means that the quantum object is limited to a certain region between x = 0 and
x = L where it moves freely but cannot ever leave. Thus mathematically we have

P(xr) =0 for x ¢ [0,L]. (4.29)
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Figure 4.1: Infinite potential well: The potential is infinite outside the interval [0, L],
inside it vanishes. Therefore the only physically allowed region for a particle is inside the
interval.

Furthermore, for the wave function to be continuous we have to require that it vanishes
at the boundaries

¥(0) = ¢(L) = 0. (4.30)

The only region were particles are allowed is inside the well, where they behave like
free particles, i.e. they are not exposed to a potential. Therefore we need to solve the free
(time-independent) Schrédinger equation with the boundary conditions from Eq. (4.30)

P ) = B, (4.31)

2m dx?

With the abbreviation
2mFE 2mFE
p— hz y k p—

the free Schrodinger equation takes the following form

kQ

(4.32)

dd—; (z) = —k* (), (4.33)

where the general solution is well known, and given by
Y(z) = asin(kx) + b cos (kx). (4.34)

Here a and b are some constants that are yet to be determined by the boundary conditions,
starting with ¢(0) = 0

0=1v0) =a w +b cos(0) = b=0. (4.35)
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Exploiting the second boundary condition ¥(L) = 0, leads to discrete values of k

0 = (L) = asin(kL) = kL = nr = k= % (4.36)
where n = 