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1 Density Matrix (Density Operator)

1.1 Description of a quantum state

Introduction

The state vector ψ contains all information about a quantum system. But in many
cases detail-information of a system are not known. (In many cases there are interac-
tions between a system and its environment. For example this may lead to spontaneous
emission in the atom or to a loss of radiation in a cavity.)

So if we want to describe a quantum system that is not isolated from its environment
we have to replace the description by the state vector ψ by a new concept - this will be
the Density Matrix -notation.

Firstly let us consider the description of a quantum system. If a quantum system is
in its energy-eigenstate, it is described by the Hamilton eigenequation

H |m〉 = Em |m〉 (1)

Example:

If we take the harmonic oscillator, the energy-eigenstates Em and the Hamilton-operator
H are given by:

Em = ~ω(m+
1
2

) (2)

H =
p2

2m
+
mω2

2
x2 (3)

The probability W (x) to find a particle in state |m〉 with energy Em at position x is
given by:

W (x) = |〈x|m〉|2 = |ϕm(x)|2 (4)
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Let us now make the assumption that the oscillator is in a superposition of energy-
eigenstates. Then for the wave-function we gather:

|ψ〉 =
∞∑
m=0

cm |m〉 (5)

⇓

ψ(x) = 〈x |ψ〉 =
∞∑
m=0

cmϕm(x) (6)

We calculate the probability W (x) to find the particle at position x:

W (x) = |〈x |ψ〉 |2 = |ψ(x)|2 =
∑
m,n

c∗m cn ϕ
∗
m(x) ϕn(x) (7)

Splitting the sum we obtain:

W (x) =
∞∑
m=0

|cm|2|ϕm|2 +
∑
m6=n

c∗m cn ϕ
∗
m(x) ϕn(x) (8)

where:

|cm|2 = pm is the probability to find the particle in mth-energy-eigenstate
with the features 0 ≤ pm ≤ 1 and

∑
m pm = 1 and

Wm = |ϕm|2 is the probability to find the mth-energy-eigenstate at position x.

Resumée

The probability to find a particle prepared in a superposition-state |ψ〉 at position x
is given by the sum of two terms, namly

∞∑
m=0

+
∑
n 6=m

where
∑∞

m=0 is the sum of the probabilities of the eigen-states and∑
n6=m is the double-sum of the off-diagonal terms. It is this second term that carries

the difference of quantum mechanics to classical physics.

Now we will discuss the following situation: We assume that in the given situation, we
dont’t have all information about the system. The information we have is the probability
distribution {pm}. The question is: Can we describe a system by the superposition-state
ψ? What does the expansion coefficient look like?
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For the expansion coefficient cm(αm) we make the following ansatz:

cm(αm) =
√
pm eiαm (9)

where cm(αm) is a complex number and pm is a real number. αm is an arbitrary phase,
but how can we fix it? As we have no information about the phase αm we have to
average over all possible phases:

〈eiαm〉 =
1

2π

∫ 2π

0
eiαmdαm = 0 (10)

Again, we consider the probability W (x):

W (x) =
∑
m

pm|ψm(x)|2 +
∑
n6=m

√
pm
√
pne

i(αn−αm)ϕ∗m(x)ϕn(x) (11)

We drop the second part to average - then the final result is:

〈W (x)〉phases =
∞∑
m=0

pmWm(x) (12)

This is the correct probability-distribution. The result contains all the information we
have. We can associate it with a starting (point) situation.

But: Averaging the state vector gives:

|ψ〉 =
∑
m

√
pme

iαm |m〉 −→ 0 (average) (13)

This of course doesn’t make sense! We conclude that we need another concept.

For getting probabilities we will now introduce a different concept for describing the
state, therefore we will introduce a new operator: the density-matrix.
We start with the probability W (x) to find a particle at position x:

W (x) = |ψ(x)|2 = |〈x|ψ〉|2 = 〈x|ψ〉〈ψ︸ ︷︷ ︸ |x〉 = 〈x|ρ|x〉 (14)

The decomposition of the density matrix ρ as a superposition of its energy-eigenstates
is given by:

ρ =
∑
m,n

ρmn|m〉〈n| (15)

with the coefficients ρmn:
ρmn = cmc

∗
n (16)

Consequently, for the density matrix of all phases we get:

ρ =
∑
m

pm|m〉〈m|+
∑
m 6=n

√
pmpn e

i(αm−αn)|m〉〈n| (17)
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Averaging over all phases gives:

〈ρ〉phases =
∑
m

pm|m〉〈m| =
∑
m

ρmm|m〉〈m| (18)

We now can see that with the density matrix ρ we obtain all information about a quan-
tum systems. This was the assumption we made in the beginning.

Conclusio

There exists two possibilities for describing a quantum system QS in Hilbert-space HS
i) QS → state vector in HS → pure state - complete info (ideal case) → quantum statis-
tics
ii) QS → state operator density matrix → mixed state - incomplete info (realistic case)
→ classical statistics, classical averaging in addition.

1.2 Properties of Density Matrices

In the following we will discuss common features of a density matrix as they are very
important for quantum statistics. Let the observed quantum system be in state ψ. We
consider the observable A in state ψ. Its expectation value is the following:

〈A〉 = 〈ψ|A|ψ〉 (19)

This structure of the expectation value motivates to define the following operator - the
density matrix (for pure states):

ρ = |ψ〉〈ψ| (20)

Properties of ρ:

• ρ is positive:
ρ ≥ 0 (21)

By saying: ”ρ is positive”, we mean, that the eigen-values of ρ are always bigger
than or equal to 0. Differently expressed: for all ϕ it is true that:

〈ϕ|ρ|ϕ〉 = 〈ϕ|ψ〉〈ψ|ϕ〉 = |〈ϕ|ψ〉|2 ≥ 0 (22)

• ρ is self-adjoint:
ρ = ρ† (23)

Proof:

Commonly the adjointD† of an operatorD = |ϕ〉〈ψ| is defined byD† = (|ϕ〉〈ψ|)† =
|ψ〉〈ϕ|, which gives for ρ: ρ† = |ψ〉〈ψ|† = |ψ〉〈ψ| = ρ.
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• Trace of ρ is 1:
trρ = 1 (24)

The common definition of the trace of an operator D is: trD =
∑

n〈n|D|n〉 where
{|n〉} is an arbitrary complete orthogonal basis. With this definition we can cal-
culate the trace of ρ:

trρ =
∑
n

〈n|ρ|n〉 =
∑
n

〈n|ψ〉〈ψ|n〉 =
∑
n

〈ψ|n〉〈n|ψ〉 = 〈ψ|ψ〉 = 1

•
ρ2 = ρ (25)

Proof:
ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = ρ (26)

We can now rewrite the expectation value of an observable A like the following:

〈A〉 = trρA (27)

which coincides with the definition: 〈A〉 = 〈ψ|A|ψ〉.

Proof:
trρA =

∑
n

〈n|ψ〉〈ψ|A|n〉 =
∑
n

〈ψ|A|n〉〈n︸︷︷︸ |ψ〉 = 〈ψ|A|ψ〉 = 〈A〉 (28)

Having found some general features of a density matrix ρ of pure states we will now
classify between pure states and mixed states by certain features of the density matrix
ρ. In the following we always consider an ensemble of object.

• Pure States: All considered objects (systems) are in one and the same state. To
proof probability-predictions in the experiment, we have to consider an ensemble
of objects with the same preparation.

Example:

Let us consider the state |ψ〉 =
∑

n cn|n〉 with the transition-coefficient cn = 〈n|ψ〉,
where A|n〉 = an|n〉. Then

〈A〉ψ =
∑
n

|cn|2an =
∑
n

an
Nn

N
(29)

where |cn|2 is the probability of the transition and Nn the number, how often
eigenvalue an was measured and N is the ensemble number. Then the density
matrix is characterized by:

ρ = |ψ〉〈ψ| (30)

〈A〉 = trρA , ρ† = ρ , ρ ≥ 0 , ρ2 = ρ , trρ = 1 , trρ2 = 1 (31)
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• Mixed States: This more general case is very important for quantum statistics.
In this case not all systems (objects) are in the same state. We consider N objects,
let Ni objects of them be in state |ψi〉. The probability pi that any object of the
ensemble is in state |ψi〉 is given by

pi =
Ni

N
(32)

where
∑

i pi = 1. Ni is the number how often the eigenvalue an appears and N is
the total ensemble number. Then the expectation value of A is given by:

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 (33)

The density matrix is defined by

ρ =
∑
i

pi|ψi〉〈ψi| (34)

with the following properties:

〈A〉 = trρA , ρ† = ρ , ρ ≥ 0 , ρ2 6= ρ (35)

trρ2 < 1 (36)

Proofs:

trρA =
∑

n,i pi〈n|ψi〉〈ψi|A|n〉 =
∑

i pi
∑

n〈ψi|A|n〉〈n|ψi〉 =
∑

i pi〈ψi|A|ψi〉 = 〈A〉

ρ2 =
∑

i

∑
j pipj |ψi〉〈ψi|ψj〉〈ψj | =

∑
i pipi|ψi〉〈ψi| 6= ρ

trρ2 =
∑

n〈n|
∑

i

∑
j pipj |ψi〉〈ψi|ψj〉〈ψj |n〉 =

∑
i

∑
j

∑
n pipj〈ψi|ψj〉〈ψj |n〉〈n|ψi〉 =

=
∑

i

∑
j pipj |〈ψi|ψj〉|2 <

∑
i pi
∑

j pj = 1

for all |ϕ〉: 〈ϕ|ρ|ϕ〉 =
∑

i pi〈ϕ|ψi〉〈ψi|ϕ〉 =
∑

i pi|〈ϕ|ψi〉|2 ≥ 0

As the last property of (36) differs from the case above where we have consid-
ered pure states we can associate δ = trρ2 as a measure of mixedness.

1.3 Equation of Motion

The time-evolution of the density matrix is given by the Von Neumann-equation. To
derive it we start with the Schrödinger-equation:

i~
∂

∂t
|ψi〉 = H|ψi〉 (37)

If H = H† is hermitian, the adjoint equation is given by:

−i~ ∂
∂t
〈ψi| = 〈ψi|H (38)
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We apply this equations for the density matrix ρ and get:

i~
∂

∂t
ρ = i~

∑
i

(
|ψ̇i〉〈ψi|+ |ψi〉〈ψ̇i|

)
= H|ψi〉〈ψi| − |ψi〉〈ψi|H = Hρ− ρH (39)

Von Neumann-equation:

i~
∂

∂t
ρ = [H, ρ] (40)

Classical analogy: The von Neumann equation is analogous to the Liouville equation
in classical statistical mechanics.

Liouville equation:
∂

∂t
ρ = {H, ρ} (41)

with the Poisson-bracket: {H, ρ} = ∂H
∂q

∂ρ
∂p −

∂H
∂p

∂ρ
∂q . Here ρ is the classical density distri-

bution in two variables p,q: ρ = ρ(p, q).

Dirac rule:
{, } → i

~
[, ] (42)

From the Schrödinger equation we also get the unitary time-shift operator:

U(t, t0) = e−
i
~H(t−t0) (43)

The density-shifts are given by:

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) (44)

Proposition 1. trρ2 is time independent!

This means that pure states remain pure and mixed states remain mixed.

Proof:

tr ρ2(t) = tr Uρ(t0)U †Uρ(t0)U † = tr ρ2(t0)UU † = tr ρ2(t0)

Example from particle physics:

Let us consider the time-evolution of the density matrix ρ of neutral K-mesons. We
descibe this decay via the non-hermitian Hamilton-operator

H = M − i

2
Γ (45)
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where M is the mass and Γ the width of the particle. With this Hamilton-operator we
get for the Schrödinger-equation:

H|KS〉 = λS |KS〉

H|KL〉 = λL|KL〉 (46)

with the complex eigenvalues

λS,L = mS,L −
i

2
ΓS,L (47)

The time-dependent density matrix ρ(t) is given by:

ρ(t) =
∑
i,j

ρij(t)|i〉〈j| (48)

where ρij = 〈i|ρ(t)|j〉 and i, j = S,L. By applying the von Neumann equation

dρ(t)
dt

= − i
~

(
Hρ− ρH†

)
(49)

we gather for the time-evolution of the density matrix:

ρ̇SS(t) = − i
~

(λS − λ∗S) ρSS(t) (50)

ρ̇LL(t) = − i
~

(λL − λ∗L) ρLL(t)

With λS − λ∗S = −iΓS the differential equation of the diagonal elements is:

ρ̇SS(t) = −1
~

ΓSρSS(t) (51)

ρ̇LL(t) = −1
~

ΓSρLL(t)

Whereas the differential equation of the off-diagonal elements is:

ρ̇SL(t) = −1
~

(Γ + i∆m) ρSL(t) (52)

where λS−λ∗L = mS−mL− i
2(ΓS+ΓL) = ∆m−iΓ with ∆m = mS−mL and Γ = ΓS+ΓL

2
As a result for the solution we get the so-called Wigner-Weisskopf-approximation:

ρSS(t) = e−
1
~ ΓStρSS(t) (53)

ρLL(t) = e−
1
~ ΓLtρLL(t)

ρSL(t) = e−
1
~ Γte−

i
~ ∆mtρSL(t)
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Example:

As an example let us now consider the time evolution of a spin-1
2 particle in an ex-

ternal magnetic field. For this case the Hamilton-operator is given by:

H = −−→µ ·
−→
B (54)

where
−→
B is a constant field parallel to the z-axis and −→µ is the magnetic dipole −→µ = gµ−→s

with spin −→s = ~
2
−→σ , −→σ is the Pauli-sigma-matrix. For electrons the gyromagnetic ratio

g ≈ 2. Bohr’s Magneton is given by: µB = e~
2mc , we define γ = g · µB. Therefore for the

Hamilton-operator we obtain:

H = −γB
2
· σz (55)

The solution for the density matrix is given by the von Neumann equation

dρ

dt
= − i

~
[H, ρ] (56)

As a solution we get:
˙ρ00 = ˙ρ11 = 0

˙ρ01 =
i

~
γBρ01 (57)

This means that:
ρ00(t) = ρ00(0) = const. (58)

ρ11(t) = ρ11(0) = const.

ρ01(t) = e
i
~γBtρ01(0) = eiωtρ01(0) (59)

ρ10(t) = e−
i
~γBtρ10(0) = e−iωtρ10(0)

Like Ehrenfest’s Theorem tells us, we can see that for the expectation value 〈−→σ 〉 = −→a
we get a classical vector, the so-called Bloch-vector.

1.4 Density matrix for spin-1/2 particles

As we know, any 2×2-matrix is a linear combination of the Pauli-sigma-matrices σx, σy,
σz and the identity matrix 1.

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(60)

As tr1 = 2 and trσi = 0, generally every density matrix with trρ = 1 can be written as:

ρ =
1
2

(
1 +−→a · −→σ

)
(61)
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The vector −→a represents a sphere, the so-called ”Bloch-sphere”. All density matrices for
spin-1

2 particles live on the sphere or inside.
The coefficients of ai, i=1,2,3 are given by

ai = trρ σi = 〈σi〉 (62)

We can see, the coefficients tell us something about the polarization of the system, e.g.
of an electron- or neutron-beam. In this sense, ai = 0 means, the beam is not polarized,
whereas ai = 1 means that the system is completely polarized.
Thus, for the density matrix we gather:

ρ =
1
2

(
1 + 〈−→σ 〉 · −→σ

)
(63)

Let −→a be in z-direction, so that ax = ay = 0 and az ≡ a. Thus, we arrive at the following
result for the density matrix:

ρ =
1
2

(
1 + aσz

)
=

1
2

(
1 + a 0

0 1− a

)
(64)

We compare this result to the general decomposition:

ρ =
∑
i,j

ρij |i〉〈j| (65)

where ρij = 〈i|ρ|j〉. Here i, j = 1, 2 = ↑, ↓ and

ρ = ρ11| ↑〉〈↑ |+ ρ22| ↓〉〈↓ |+ ρ12| ↑〉〈↓ |+ ρ21| ↓〉〈↑ | (66)

In comparison with eg. (64) we get:

ρ11 =
1
2

(1 + a) , ρ22 =
1
2

(1− a) , ρ12 = ρ21 = 0 (67)

Here ρ11 and ρ22 denote the probabilities to find the particle in the state ↑ or ↓. As
1
2(1± a) are probabilities, we know that:

1
2
|1± a| ≤ 1

1± a ≤ 2

|a| ≤ 1 (68)

This means that the state is described by the density matrix ρ, at the same time it is a
polarization-operator σ↑ or a projection operator P↑. Thus, for |a| = 1 we get a totally
polarized state. For example, the density matrix for the completely polarized ↑-state is
denoted by:

ρ =
1
2

(1 + σz) = σ↑ ≡ P↑ = | ↑〉〈↑ | (69)
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Analogously we have for the density matrix for the completely polarized ↓-state:

ρ =
1
2

(1− σz) = σ↓ ≡ P↓ = | ↑〉〈↓ | (70)

The question that remains is: Which ρ characterizes a pure state? For pure states we
know that:

ρ2 = ρ (71)

So we calculate ρ2 (recall that −→a · −→σ −→a · −→σ = −→a 2 = a2):

ρ2 =
1
4

(1 + 2−→a · −→σ +−→a · −→σ −→a · −→σ )

ρ2 =
1
2

(
1 + a2

2
1 +−→a · −→σ

)
If we compare this to ρ = 1

2(1 +−→a · −→σ ) with ρ2 = ρ we get:

1 + a2

2
= 1

|−→a | = 1 (72)

We see: for pure states |−→a | = 1, whereas for mixed states |−→a | < 1.

Finally let us consider an example for a density matrix of a totally mixed state:

ρmix =
1
2

(| ↑〉〈↑ |+ | ↓〉〈↓ |) =
1
2

1 =
1
2

(σ↑ + σ↓) (73)

Here the Bloch-vector −→a = 0, so the state is totally mixed.

1.5 Density matrix for a pure spin state along an arbitrary direction

Let the observed system be in eigenstate of −→σ · −→n . Then we write eigenequation of the
system:

−→σ · −→n | ± −→n 〉 = ±| ± −→n 〉 (74)

Where:
|+−→n 〉 = cos

ϑ

2
e−i

ϕ
2 | ↑〉+ sin

ϑ

2
ei
ϕ
2 | ↓〉 (75)

| − −→n 〉 = −sin
ϑ

2
e−i

ϕ
2 | ↑〉+ cos

ϑ

2
ei
ϕ
2 | ↓〉 (76)

Consequently, the density matrix in {| ↑〉, | ↓〉}-basis is given by:

ρ = |+−→n 〉〈+−→n | = (cos
ϑ

2
e−i

ϕ
2 | ↑〉+ sin

ϑ

2
ei
ϕ
2 | ↓〉) · (cos

ϑ

2
ei
ϕ
2 | ↑〉+ sin

ϑ

2
e−i

ϕ
2 | ↓〉) (77)

We remark the sum and the difference of the diagonal elements:

ρ↑↑ + ρ↓↓ = cos2ϑ

2
+ sin2ϑ

2
= 1 (78)
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ρ↑↑ − ρ↓↓ = cos2ϑ

2
− sin2ϑ

2
= cosϑ = 〈σz〉

We see: the diagonal elements describe the longitudinal polarization. Whereas, for the
off-diagonal-elements we get the vertical polarization (projection on x-y-plane):

|ρ↑↓| = |ρ↓↑| =
1
2

sinϑ =
1
2
〈σv〉 (79)

Spin-measurement along −→n :

In the following we want to show the explicit calculation of the spin-state along an
arbitrary direction −→n . Firstly we are interested in the eigenstates and eigenvectors of
−→n · −→σ :

−→n · −→σ = n1σ1 + n2σ2 + n3σ3 (80)

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(81)

The eigenequations are given by:

−→n · −→σ | ± −→n 〉 = ±| ± −→n 〉 (82)

Denoting the components of |+−→n 〉 by (a, b) we gather:

a = n3a+ (n1 − in2)b (83)

a =
n1 − in2

1− n3
b

⇒ |a|2 =
n2

1 + n2
2

(1− n3)2
|b|2

The normalization 〈+−→n |+−→n 〉 = 1 gives:

b =

√
1− n3

2
(84)

a =
n1 − in2√
2(1− n3)

Analogously we have for the negative eigenvalue vector components | − −→n 〉, denoted by
(c, d):

c = −b∗, d = a∗ (85)

Re-expressing finally −→n by polar coordinates and extracting overall phases like e±i
ϕ
2 we

obtain equations (75), (76).
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density matrix: pure state - mixed state

In the following we are interested in the question: What is the difference between a
pure state and a mixed state?

pure state: A pure state is a coherent superposition of states, e.g. | ↑〉, | ↓〉. Off-
diagonal-elements do exist, they contain the phase information and are responsible for
coherence.

mixed state: A mixed state is an incoherent superposition of states, e.g. | ↑〉, | ↓〉.
In this case off-diagonal-elements do not exist, so the phase information is lost, at least
partially. It is lost totally for totally mixed state where |−→a | = 0.

Comparison:

The density matrix of the totally mixed state has the following structure:

ρmix =
1
2

(| ↑〉〈↑ |+ | ↓〉〈↓ |) =
1
2

(
1 0
0 1

)
=

1
2
1 (86)

The density matrix of the pure state with θ = 90, ϕ = 0 is given by:

ρpure =
(

cos2 θ
2

1
2 sinθe−iϕ

1
2 sinθeiϕ sin2 θ

2

)
=

1
2

(
1 1
1 1

)
(87)

Now we will consider the expectation value of an operator, so to say the measurement
outcome. If we consider the spin along the z-axis, we can see, that we can find no
difference between the mixed and the pure state:

〈σz〉mix = trρmixσz = tr
1
2

(
1 0
0 1

)(
1 0
0 −1

)
= 0 (88)

〈σz〉pure = trρpureσz = tr
1
2

(
1 1
1 1

)(
1 0
0 −1

)
= 0 (89)

In both cases 50% of the spins are orientated along ↑ and 50% along ↓. Now we choose
projections on a definite spin, therefore we define the following projection operators:

P↑ = | ↑〉〈↑ | =
(

1 0
0 0

)
(90)

P↓ = | ↓〉〈↓ | =
(

0 0
0 1

)
P+ ≡ ρ(θ = 90, ϕ = 0) =

1
2

(
1 1
1 1

)
(91)
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P− ≡ ρ(θ = 90, ϕ = 180) =
1
2

(
1 −1
−1 1

)
Consequently, for the expectation values we obtain:

〈P↑〉mix = tr ρmixP↑ = tr
1
2

(
1 0
0 1

)(
1 0
0 0

)
=

1
2

(92)

〈P↑〉pure = tr ρpureP↑ = tr
1
2

(
1 1
1 1

)(
0 0
0 1

)
=

1
2

〈P↓〉mix = tr
1
2

(
1 0
0 1

)(
0 0
0 1

)
=

1
2

(93)

〈P↓〉pure = tr
1
2

(
1 1
1 1

)(
0 0
0 1

)
=

1
2

We see: There is no difference up to now between the mixed and the pure states. But if
we choose the spin measurement along the x-axis we get:

〈P+〉mix = tr ρmixP+ = tr
1
2

(
1 0
0 1

)
1
2

(
1 1
1 1

)
=

1
4

tr
(

1 1
1 1

)
=

1
2

(94)

〈P−〉mix = tr ρmixP− = tr
1
2

(
1 0
0 1

)
1
2

(
1 −1
−1 1

)
=

1
4

tr
(

1 −1
−1 1

)
=

1
2

Whereas:

〈P+〉pure = tr ρpureP+ = tr
1
2

(
1 1
1 1

)
1
2

(
1 1
1 1

)
=

1
2

tr
(

1 1
1 1

)
= 1 (95)

〈P−〉pure = tr ρpureP− = tr
1
2

(
1 1
1 1

)
1
2

(
1 −1
−1 1

)
=

1
4

tr
(

0 0
0 0

)
= 0

Resumée

For pure states it is characteristic that there exists a maximal test such that the
outcome accurs with 100%. But for mixed states such a test is not possible.

1.6 Density matrix for mixed states

In the following we will discuss the example of an silver-atom. The atom is emitted
by an oven and runs through a Stern-Gerlach-experiment, which acts like a polarizer.
The silver-atom carries a spin, which looks into all directions. Each spin-direction has
the same probability. Thus there is a statistical mixture of | + −→n 〉 -states with equal
probabilities.
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The density matrix is defined by:

ρpure = |ψi〉〈ψi| =: ρi (96)

ρmix =
∑
i

piρi (97)

with the probabilities pi with
∑

i = 1. We now exchange the sum by an integral:∑
i

→ 1
4π

∫
dΩ (98)

So we integrate the average space-angle over all directions with the normalization con-
stant 4π. Thus, for the density matrix we get:

ρmix =
1

4π

∫
dΩρ(Ω) (99)

We recall the density matrix for the pure spin state |+−→n 〉 :

ρ =
(

cos2 θ
2

1
2 sinθ e−iϕ

1
2 sinθ eiϕ sin2 θ

2

)
(100)

Thus for the integration over all spin-states we have:

ρmix =
1

4π

∫ 2π

0
dϕ

∫ π

0
sinθdθρ(θ, ϕ) =

1
4π

2π
∫ 1

−1
dξρ(ξ, ϕ) (101)

where ξ = cosθ. Consequently, the as a result for the integration for the mixed density
matrix we gather:

ρmix =
1
2

(
1 0
0 1

)
=

1
2
1 (102)

We can now easily calculate ρ2
mix:

ρ2
mix =

1
4
1 =

1
2
ρmix (103)

We see: ρ2
mix 6= ρmix. So indeed the state we consider is a mixed state.

Remark No 1: The expectation value of the spin in the mixed state is given by:

〈σi〉mix = trρmixσi =
1
2

trσi = 0 (104)

The spin is not polarized, all directions are equal, therefore the expectation value (aver-
age value) is zero.
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Remark No 2: The off-diagonal-elements of the density matrix are given by:

ρmix
↑↓ = ρmix

↓↑ = 0 (105)

⇓

〈−→σ⊥〉 = 0 (106)

We see: The expectation value of the transverse spin disappears.

Remark No 3: ρmix represents a statistical mixture of the different states | + −→n 〉,
which have the same probability for all directions.

Important Note: There are different mixtures that lead to the same density ma-
trix! Differently said: One and the same density matrix can be produced differently!

Example:

• Mixture of states | ↑〉 and | ↓〉 with equal weights:

ρmix =
1
2

(| ↑〉〈↑ |+ | ↓〉〈↓ |) =
1
2
1 (107)

In the following we will see: We can get the same density matrix with a different
mixture:

• Mixture of 3 states |+−→n 〉 with equal weights so that the angle between two states
is always 120. Generally the state is given by:

|+−→n 〉 = cos
θ

2
e−iϕ| ↑〉+ sin

θ

2
eiϕ| ↓〉 (108)

So we choose the following mixture of three states:

1√
3
| ↑〉 = |1〉

1√
3
(cos120

2 | ↑〉+ sin120
2 | ↓〉) = |2〉

1√
3
(cos120

2 | ↑〉 − sin120
2 | ↓〉) = |3〉

Thus, for the mixed density matrix we gather:

ρmix =
3∑
i=1

|i〉〈i| = 1
3
| ↑〉〈↑ |+

+
1
3

[cos260| ↑〉〈↑ |+ sin260| ↓〉〈↓ |+ sin60 cos60(| ↑〉〈↓ |+ | ↓〉〈↑ |)]+

+
1
3

[cos260| ↑〉〈↑ |+ sin260| ↓〉〈↓ | − sin60 cos60(| ↑〉〈↓ |+ | ↓〉〈↑ |)] =
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=
(

1
3

+
2
3

1
4

)
| ↑〉〈↑ |+ 2

3
3
4
| ↓〉〈↓ | =

=
2 + 1

6

(
1 0
0 0

)
+

1
2

(
0 0
0 1

)
=

1
2

(
1 0
0 1

)
=

1
2
1 (109)

The physical prediction depends only on the density matrix. This means that we cannot
distinguish between the different types of statistical mixtures, which lead to the same
density matrix. We can understand the different types like different aspects of one and
the same incomplete information, which we have about a system. This leads to the
entropy-notation for a quantum system: The entropy is a measure for the degree of un-
certainty of a quantum system.

Theorem 1. Thirring: In a mixed system we have only partial information about a
quantum system. The entropy measures how much is missing from the maximal infor-
mation.

1.7 Density matrix in thermal equilibrium

In the following we will discuss the important example: the quantum system as a har-
monic oscillator. In thermal equilibrium the n-th energy eigenstate is occupied with the
probability:

pn = Ne−nβ (110)

where β = ~ω
kT and N is the normalization constant. Thus, the density matrix is given

by:

ρ =
∞∑
n=0

pn|n〉〈n| = N
∞∑
n=0

e−nβ|n〉〈n| (111)

We calculate the normalization constant from the condition that trρ = 1:

1 = trρ =
∑
n

〈n|ρ|n〉 = N

∞∑
n=0

e−nβ = N
1

(1− e−β)
(112)

⇓

N =
(

1− e−β
)

(113)

Consequently, we get for the density matrix:

ρ =
(

1− e−β
) ∞∑
n=0

e−nβ|n〉〈n| (114)

We will now consider the relation between the average energy 〈H〉 and the temperature
T :

〈H〉 = trρH =
∑
n

〈n|ρH|n〉 =
∑
n

〈n|ρ|n〉~ω
(
n+

1
2

)
=

18



= ~ω

[(
1− e−

~ω
kT

) ∞∑
n=0

ne−n
~ω
kT +

1
2

]
(115)

The probability for the n-th state is:

〈n|ρ|n〉 = pn = (1− e−β)e−nβ (116)

In the following we will consider the relation between the average energy 〈H〉 and the
average number of photons n:

〈H〉 =
∑
n

〈n|ρ|n〉~ω
(
n+

1
2

)
=
∑
n

pn~ω
(
n+

1
2

)
(117)

The average number of thermal quanta is given by:

n =
∞∑
n=0

pnn =
∑
n

(
1− e−β

)
ne−nβ = −

(
1− e−β

) ∂

∂β

∑
n

e−nβ =
e−β

1− e−β
=

1
eβ − 1

(118)
This means that the mean number of thermal quanta is determined by the temperature
T . Consequently, for the mean energy we get:

〈H〉 =
∑
n

pn~ω
(
n+

1
2

)
= ~ω

(
n+

1
2

)
(119)

We now express the density matrix in terms of the mean number of thermal quanta:

ρ =
(

1− e−β
)∑

n

e−nβ|n〉〈n| = 1
n+ 1

∞∑
n=0

(
n

n+ 1

)n
|n〉〈n| (120)

Remark: ”black body” radiation

The atom emits and absorbs photons with an energy of E = ~ω. For the relation
of the number of atoms in ground Ng and in excited state Ne in thermal equilibrium we
have:

Ne

Ng
= e−

E
kT (121)

In thermal equilibrium the absorption and emission rates must be equal:

Ngn = Ne(n+ 1) (122)
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Note

”+1” stands for spontaneous emission of an additional photon in the exited state. From
this relation we can calculate the average number of photons n:

n

n+ 1
=
Ne

Ng
= e−

~ω
kT (123)

⇓

n =
1

eβ − 1
(124)

Thus, for the energy for the mean photon number we gather:

n~ω =
~ω

eβ − 1
(125)

In 1 dimension the energy density of the photons is:

dN =
L

2π
dk (126)

In 3 dimensions it is:
dN =

V

(2π)3
d3K · 2 (127)

The factor ”2” stands for the two independent degrees of freedom of the polarization.
With d3k = 4πk2dk we get:

dN =
V ω2

π2c3
dω (128)

Classically for the energy density of photons we have:

dE = kTdN (129)

Thus, we get the classical radiation equation (Rayleigh-Jeans):

u(ω) =
1
V

dE

dω
=

kT

π2c3
ω2 (130)

Quantum mechanically the energy density of photons is given by:

dE = n~ωdN (131)

So we arrive at the quantum mechanical radiation equation (Planck):

u(ω) =
1
V

dE

dω
=

~
π2c3

ω3

e
~ω
kT − 1

(132)
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1.8 Composite quantum systems

The composite quantum system consists of subsystems, for instance Alice and Bob (in
quantum information theory) or 2 atoms, or 2 particles, or 2 degrees of freedom of the
same object, for example the spin-path of a neutron, etc. For a combined system

AB = A+B (133)

described in the Hilbert-space-notation we get a tensor product of the subspaces:

HAB = HA ⊗HB (134)

If the state vectors in the subsystems are {|ϕi〉A ε HA} and {|ϕj〉A ε HB} then the
space vector for the combined (composite) system is given by:

|ψ〉 =
∑
i,j

cij |ϕi〉A ⊗ |ϕj〉B (135)

Note:

|ϕi〉A ⊗ |ϕj〉B forms a basis in the tensorspace with the dimension:

dimHAB = dimHA · HB (136)

We will now consider two operators that are acting in Hilbert-space, namely operator A
action in HA and operator B acting in HB. We introduce the norm of an operator:

‖A‖22 = trA†A <∞ (137)

and the scalar product:
(A1, A2) = trA†1A2 (138)

The Hilbert-Schmidt operators form a Hilbert space, the so-called Hilbert-Schmidt-
space. The tensor product of an operator can be defined via the action on vectors:

(A⊗B)(|ϕi〉A ⊗ |ϕj〉B) ≡ A|ϕi〉A ⊗B|ϕj〉B (139)

Any operator acting on HAB is expressible by a linear combination of tensor products:

O =
∑
i

aiAi ⊗Bi (140)

In particular, observables of the subsystems A and B can be written:

A⊗ 1B (141)

1A ⊗B

where 1A and 1B are the identities in the subsystems. We now will consider the density
matrix of the composite system, which is an operator action on HAB. If the subsystems
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are uncorrelated the density matrix of the composite system is given by the density
operators of the subsystems:

ρAB ≡ ρ = ρA ⊗ ρB (142)

where ρA is action on HA and ρB is action on HB. The expectation value of the tensor
product of operators factorizes:

〈A⊗B〉 = trA⊗Bρ = tr(A⊗B)(ρA ⊗ ρB) = tr[AρA ⊗BρB] =

= trAAρA · trBBρB = 〈A〉 · 〈B〉 (143)

where trA and trB denote the partial traces over the subsystems. If an operator on the
total space HAB is given by:

O = |a1〉〈a2| ⊗ |b1〉〈b2| (144)

with the vectors |ai〉 ε HA and |bi〉 ε HB, then the partial trace over the subsystem B is
defined by:

trBO = |a1〉〈a2|tr|b1〉〈b2| = 〈b2|b1〉|a1〉〈a2| ε HA (145)

Thus, the reduced density matrices are defined by:

ρA = trBρ ε HA (describes state on system A) (146)

ρB = trAρ ε HB (describes state on system B)

This definition will be intuitively clear when we consider the product state

ρ = σ ⊗ τ (147)

where σ ε HA and τ ε HB. Then we gather:

trρA = trBσ ⊗ τ = σ (148)

trρB = trAσ ⊗ τ = τ

The reduced density matrix ρA completely describes the statistical properties of all
observables of the subsystem A:

〈A〉ρ = trAρ = tr(A⊗ 1B)ρ = trAAρA = 〈A〉ρA (149)

Example:

As an example let us consider qubits. The states of the subsystems are given by:

| ↑〉 =
(

1
0

)
, | ↓〉 =

(
0
1

)
(150)
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Thus for the composite system we get:

| ↑〉 ⊗ | ↓〉 =


0
1
0
0

 (151)

Let’s consider the operators:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
(152)

For the composite system we obtain:

σx ⊗ σy =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 (153)

Schmidt decomposition theorem (only for pure states)

For any state vector |ψ〉 ε HA ⊗HB there exist orthonormal bases - the Schmidt-bases

{|χi〉AεHA} and {|χi〉BεHB} (154)

such that
|ψ〉 =

∑
i

ci|χi〉A ⊗ |χi〉B (155)

with the Schmidt coefficients ci. From the normalization 〈ψ|ψ〉 = 1 we get:∑
i

|ci|2 = 1 (156)

Proof of the Schmidt decomposition theorem:

Without loss of generality we can suppose that dimHA = dimHB. Then the coeffi-
cient matrix in general decomposition is given by:

C = (cij) is square matrix (157)

⇓

|ψ〉 =
∑
i,j

cij |ϕi〉A ⊗ |ϕj〉B (158)

We now use the singular value decomposition theorem of matrices:

C = UCdiagV (159)
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where U and V are unitary matrices and Cdiag is a diagonal matrix with non-negative
eigen-values. In components we can write:

cij = uikc
diag
kk vkj (160)

Then for the state vector |ψ〉 we get:

|ψ〉 =
∑
i,j

cij |ϕi〉A ⊗ |ϕj〉B =
∑
ijk

uikckvkj |ϕi〉A ⊗ |ϕj〉B =
∑
k

ck|χk〉A ⊗ |χk〉B q.u.e.d.

(161)
Remark:

Note that the Schmidt basis can always be chosen such that the Schmidt-coefficients
ci ≥ 0 are real and non-negative.

Definition

The Schmidt number NS is defined by the number of Schmidt coefficients ci > 0. NS is
invariant under unitary transformations UA and UB on the subspaces HA and HB. NS

is uniquely defined for a space-vector |ψ〉 (it does not depend on a particular Schmidt
basis).

A state |ψ〉 is called product state if it can be written as a tensor product

|ψ〉 = |ϕ〉A ⊗ |ϕ〉B (162)

A state |ψ〉 ε HAB = HA ⊗ HB is called entangled if it cannot be written as a tensor
product. From the Schmidt decomposition theorem follows:

|ψ〉 is entangled if NS > 1 (163)

|ψ〉 is a product state if NS = 1

|ψ〉 is maximal entangled if all Schmidt coefficients are equal |ci| = |c| (164)

We will now consider the density matrix of a composite quantum system in a pure state.

Lemma 1. If a system is in a pure state ρ = |ψ〉〈ψ| then the reduced density matrices
ρA = trBρ and ρB = trAρ have same eigenvalues.

Proof:

ρA = trB|ψ〉〈ψ| = trB[
∑
i

ci|χi〉A ⊗ |χi〉B(
∑
j

c∗ Aj 〈χj | ⊗B 〈χj |)] =

= trB[
∑
ij

cjc
∗
j |χj〉〈χj |A ⊗ |χi〉〈χj |B] = tr|ci|2|χi〉〈χi|A (165)
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Analogously:
ρB = trA|ψ〉〈ψ| =

∑
i

|ci|2|χi〉〈χi|B q.u.e.d. (166)

Remark:

Generally subsystems are in mixed states when the composite system is in a pure state.
If a composite state ρ is maximal entangled, then the reduced densities ρA and ρB ∼
1 are maximal mixed. A composite state ρ is a product state if ρA and ρB are in pure
states.

1.9 Purification of a quantum state

Motivation:

The purification of a quantum state is a frequently used technique in quantum com-
munication and quantum information.

We can associate pure states with mixed states. For example let us consider a given
quantum state ρA of the system Alice. Then we introduce another system R as a ref-
erence system. (Note: There is not necessarily a direct physical significance.) We now
define the pure state |AR〉 of the joint system AR

ρ = |AR〉〈AR| ε HAR = HA ⊗HR (167)

such that the reduced density matrix is given by:

ρA = trR|AR〉〈AR| (168)

Thus the pure state ρ reduces to ρA when we look only at A. Purification can be done
for any state. Let us suppose a mixed state. Then the purification can be constructed:

ρA =
∑
i

pi|ϕi〉〈ϕi|A (169)

with the complete orthogonal basis {|ϕi〉A ε HA}. To purify ρA we introduce the system
R with the same state space as A: {|ϕi〉R ε HR}. We now define the pure state for the
joint system AR - according to the Schmidt decomposition - as:

|AR〉 =
∑
i

√
pi|ϕi〉A ⊗ |ϕi〉R (170)

Then the reduced density matrix for A is given by:

trRρ = trR|AR〉〈AR| =
∑
i,j

√
pipj |ϕi〉〈ϕj |Atr|ϕi〉〈ϕj |R =

∑
i

pi|ϕi〉〈ϕi|A = ρA (171)

Thus ρ = |AR〉〈AR| is a purification of ρA.
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Procedure of purification:

A mixed state ρA can be purified by defining a pure state |AR〉 with such a Schmidt basis
for A in which the mixed state ρA is diagonal. The Schmidt coefficients are

√
pi where

pi are the eigenvalues of ρA. We see: With the Schmidt decomposition purification can
be obtained.

1.10 Examples of composite states

1. Bell states

Let us now consider the maximal entangled Bell states:

|ψ∓〉 =
1√
2

(| ↑〉 ⊗ | ↓〉 ∓ | ↓〉 ⊗ | ↑〉) (172)

|φ∓〉 =
1√
2

(| ↑〉 ⊗ | ↑〉 ∓ | ↓〉 ⊗ | ↓〉)

The Bell density matrices are denoted by ρ∓ and ω∓:

ρ∓ = |ψ∓〉〈ψ∓| (173)

ω∓ = |φ∓〉〈φ∓|

Explicitly we get for ρ−:

| ↑〉 ⊗ | ↓〉 =
(

1
0

)(
0 1

)
=
(

0 1
0 0

)
, | ↓〉 ⊗ | ↑〉 =

(
0
1

)(
1 0

)
=
(

0 0
1 0

)

(
1 0
0 0

)
⊗
(

0 0
0 1

)
=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


⇓

ρ− =
1
2

(| ↑〉〈↑ | ⊗ | ↓〉〈↓ | − | ↑〉〈↓ | ⊗ | ↓〉〈↑ |+ | ↓〉〈↓ | ⊗ | ↑〉〈↑ | − | ↓〉〈↑ | ⊗ | ↑〉〈↓ |) =

=
1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 (174)

In terms of the Pauli matrices the Bell states can be expressed like the following:

ρ∓ =
1
4

(1∓ σAx ⊗ σBx ∓ σAy ⊗ σBy − σAz ⊗ σBz ) (175)
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ω∓ =
1
4

(1∓ σAx ⊗ σBx ± σAy ⊗ σBy + σAz ⊗ σBz )

with the Pauli matrices σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

2. Werner state - mixed entangled

ρW = pρ− + (1− p)1
4
1 (176)

where 0 ≤ p ≤ 1. One can find that for 0 ≤ p ≤ 1
3 the Werner state is separable, for

1
3 < p ≤ 1

2 it behaves classically and for 1
2 < p ≤ 1 it can be used for teleportation. For

1
3 ≤ p ≤

1√
2

the Bell Inequality is not violated but still the state is entangled.

The density matrix for Alice and Bob is given by:

ρα =
1
4

(1− α−→σ A ⊗−→σ B) (177)

For −1
3 ≤ α ≤ 1 the density matrix is well-defined, this means that it is a positive op-

erator. For −1
3 ≤ α ≤ 1

3 the state is separable and for 1
3 < α < 1 it is mixed entangled.

Just for α = 1 we get a pure state namly the anti-symmetric Bell-Singlet state, which is
maximal entangled.

Separable states

We now define the set of separable states:

S = {ρ =
∑
i

piρ
A
i ⊗ ρBi | 0 ≤ pi ≤ 1,

∑
i

pi = 1} (178)

A state ω is entangled when it is not separable so ω ε Sc where Sc is the complement to
S. One can show that S is convex and that S and Sc combine to the Hilbert-space:

S ∪ Sc = H (179)

Reduced density matrix of entangled states

The reduced density matrix for an entangled state is given by:

ρ− =
1
2

(| ↑〉〈↑ | ⊗ | ↓〉〈↓ | − | ↑〉〈↓ | ⊗ | ↓〉〈↑ |+ | ↓〉〈↓ | ⊗ | ↑〉〈↑ | − | ↓〉〈↑ | ⊗ | ↑〉〈↓ |)
(180)

We trace over Bob:

Tr| ↓〉〈↓ | =
∑
i=↑,↓

= 〈i| ↓〉〈↓ |i〉 = 〈↓ | ↓〉〈↓ | ↓〉 = 1 (181)

Tr| ↑〉〈↑ | =
∑
i=↑,↓

= 〈i| ↑〉〈↑ |i〉 = 〈↑ | ↑〉〈↑ | ↑〉 = 1
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Tr| ↑〉〈↓ | = 〈↑ | ↑〉〈↓ | ↑〉+ 〈↓ | ↑〉〈↓ | ↓〉 = 0

Tr| ↓〉〈↑ | = 0

Thus for the reduced density matrix for Alice we get:

ρA = TrBρ− =
1
2

(| ↑〉〈↑ |+ | ↓〉〈↓ |) =
1
2
1 (182)

Note: The state ρA is maximally mixed with the measure:

δ = Tr(ρA)2 =
1
4

Tr1 =
1
2
< 1 = TrρA (183)

Remark:

The joint state of Alice and Bob consists of 2 qubits. If we want to know Alice’ state
we have to trace over Bob. Then the state of Alice is maximally mixed. Thus we don’t
have the maximal information about state A. We can express this maximal uncertainty
with the von Neumann entropy S - which will be defined in the following chapter - of
the reduced density matrix ρA:

S(ρA) = −1
2

log2

1
2
· 2 = −1

2
(−1)2 = 1 (184)

Whereas for a pure and maximally entangled state there is no uncertainty and the von
Neumann entropy vanishes:

S(ρ−) = −trρ−log2ρ
− → 0 (185)

2 Quantum entropies

2.1 Von Neumann Entropy - definition

Let be a given state ρ. Then the von Neumann entropy is defined by

S(ρ) = −tr ρ logρ (186)

Note:

Here log = ln, whereas for qubits it’s better to use log2x = lnx
ln2 .

The trace of the operator (density matrix) is defined via its eigenvalues. Thus for the
entropy we get:

S(ρ) = −
∑
i

λi logλi (187)

For a totally mixed state we have:

ρmix =
1
d
1d (188)
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S(ρmix) = −tr ρmix logρmix = −tr
1
d
1 log

1
d
1 = −

∑
i

1
d
λi log

λi
d

= log d (189)

The entropy can be normalized:
0 ≤ S(ρ) ≤ 1 (190)

Examples:

• pure state: |α〉 = 1√
2
(| ↑〉+ eiα| ↓〉

Here the density matrix is given by:

ρα =
1
2

(
1 e−iα

eiα 1

)
(191)

We calculate the eigenvalues:∣∣∣∣1− λ e−iα

eiα 1− λ

∣∣∣∣ = 0 ⇒ (1− λ)2 =⇒ λ1 = 2, λ2 = 0 (192)

⇓

ρdiag
α =

(
1 0
0 0

)
(193)

Thus for the von Neumann entropy we get:

S(ρα) = −trρdiag
α logρdiag

α = −1 log 1− 0 log 0 = 0 (194)

So we can distinguish between the following cases:
i) 0 < S(ρ) ≤ 1 mixed state
ii) S(ρ) = 1 maximal mixed
iii) S(ρ) = 0 pure state

• mixed state: The density matrix is given in the spectral decomposition:

ρ =
∑
i

pi|ϕi〉〈ϕi| (195)

where pi ≥ 0 and
∑

i pi = 1. Then the entropy becomes:

S(ρ) = −trρ logρ = −tr
∑
i

pi|ϕi〉〈ϕi| log
∑
j

pj |ϕj〉〈ϕj | = (196)

= −tr
∑
i

pi
∑
j

∑
k

ck(pj)k|ϕi〉〈ϕi|ϕj〉〈ϕj |... = −
∑
i

pi logpi ≡ H({pi})

where H({pi}) denotes the Shannon Information Entropy of a classical probability
distribution {pi} for random numbers i.
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Resumée:

A statistical mixture is achieved by mixing pure states with weights pi. Then
the von Neumann entropy expresses the uncertainty - the lack of knowledge (par-
tial information) - about the realization of a particular state in the mixture.

Remark:

When mixing 2 or more random variables we can define the binary entropy. The
entropy of a binary outcome of 2 random variables is given by:

Hbin(p) = −p logp− (1− p) log(1− p) (197)

where 0 ≤ p ≤ 1.

2.2 Properties of Von Neumann Entropy

As we already know the von Neumann entropy is given by:

S(ρ) = −trρ logρ (198)

where ρ denotes a quantum state.

The von Neumann entropy has the following properties:

•
S(ρ) ≥ 0 (199)

If S(ρ) = 0 ⇒ ρ is a pure state.

•
S(ρ) ≤ log d (200)

If S(ρ) = log d ⇒ ρ is a totally mixed state: ρ = 1
d1d.

•
S(UρU †) = S(ρ) (201)

This means that S(ρ) is invariant under unitary transformations U ,
where U †U = 1.

• S(ρ) is a concave functional. This a very important property! For the map of ρ in
Hilbert space this means: map ρ→ S(ρ). So for any set {pi} we know:

S

(∑
i

piρi

)
≥
∑
i

piS(ρi) (202)

where 0 ≤ pi ≤ 1 and
∑

i pi = 1. Remark: If ρi ≡ ρ for all indices i⇒ S(
∑

i piρi) =∑
i piS(ρi).
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Physically this property tells us that the uncertainty about a state
∑

i piρi is
greater (or equal) than the uncertainties of states ρi in mixture. Proof: see end of
this section

• Suppose that pi is a probability with the properties pi ≥ 0, 0 ≤ pi ≤ 1 and∑
i pi = 1. Let ρi be quantum states with support on orthogonal subspaces. Then

there holds the following entropy theorem:

Theorem 2.
S(
∑
i

piρi) = H({pi}) +
∑
i

piS(ρi) (203)

where H({pi}) = −
∑

i pi logpi denotes the Shannon entropy of the probability
distribution {pi}.

Proof:

Let be λji eigenvalues and |eji 〉 eigenvectors of ρi. Since the subspaces are or-
thogonal we can suppose that piλ

j
i are eigenvalues and |eji 〉 are eigenvectors of∑

i piρi. Then:

S(ρ) = S

(∑
i

piρi

)
= −

∑
j

λ
j logλj (204)

where λj are eigenvalues of ρ. With logpiλ
j
i = logpi + logλji we can write:

S(ρ) = −
∑
i,j

piλ
j
i logpiλ

j
i = −

∑
i

pilogpi
∑
j

λji −
∑
i

pi
∑
j

λji logλji =

= H({pi}) +
∑
j

piS(ρi) (205)

• Joint entropy theorem for composite systems

Suppose that pi is the probability with the properties pi ≥ 0 and
∑

i pi = 1.
Let ρi be any density matrix on subsystem A. Let |i〉 be an orthogonal basis on
subsystem B corresponding to index i of ρi. Finally let be joint state

ρAB =
∑

piρi ⊗ |i〉〈i| (206)

Then we have the joint entropy theorem:

Theorem 3.
S(ρAB) = H({pi}) +

∑
i

piS(ρi) (207)
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Proof:

Let us consider states with support on orthogonal subspaces: ρ′i = ρi ⊗ |i〉〈i|.
From the entropy theorem for ρ′i follows:

S(ρAB) = S

(∑
i

piρ
′
i

)
= H({pi}) +

∑
i

piS(ρ′i)

And we can show that:

S(ρ′i) = −trρ′i log ρ′i = −trρi ⊗ |i〉〈i| log ρi ⊗ |i〉〈i| = −trA ρi log ρi = S(ρi)

which completes the proof.

• entropy of composite system: Let us consider a density matrix ρ on Hilbert-
space HA ⊗HB = HAB. The density matrices on the subsystems are given by:

ρA = trBρ ε HA , ρB = trAρ ε HB (208)

The entropy of the composite system satisfies the subadditivity property

S(ρ) ≤ S(ρA) + S(ρB) upper bound (209)

For ρ = ρA ⊗ ρB we get: S(ρ) = S(ρA) + S(ρB). Physically this means that
the uncertainty of the product state (Alice and Bob uncorrelated) is larger than
the uncertainty about the composite system. This means that by tracing over
subsystem A, B we lose information about correlations between A and B, thus,
increasing the entropy. The Proof for the subadditivity follows quickly from the
relative entropy, see Section 2.3., Eq. (234).

Generally we can say if ρ is a pure state ρ = |ψ〉〈ψ| ⇒ S(ρ) = 0.

From the Schmidt decomposition theorem follows that the subsystems have the
same eigenvalues |ci| with the Schmidt coefficients ci.

S(ρA) = S(ρB) = −
∑
i

|ci|2 log|ci|2 ≥ 0 (210)

with the strict positivity > 0 if ρ is entangled.

We also want to mention the Araki-Lieb inequality

lower bound |S(ρA)− S(ρB)| ≤ S(ρ) (211)
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Proof of the concavity of the von Neumann entropy:

With the properties we have discussed before we are in position to prove the concavity
of the von Neumann entropy:

S

(∑
i

piρi

)
≥
∑
i

piS(ρi) (212)

Proof: Let be ρi states of the system A. We introduce an auxiliary system B whose
state space has the orthogonal basis |i〉 corresponding to the index i of ρi. The joint
state is defined by:

ρAB =
∑
i

piρi ⊗ |i〉〈i| (213)

To prove the concavity we use the subadditivity of the entropy, we have:

ρA = trBρAB =
∑
i

piρi (214)

ρB = trAρAB =
∑
i

pi|i〉〈i|

S(ρA) = S

(∑
i

piρi

)
(215)

S(ρB) = S

(∑
i

pi|i〉〈i|

)
= −tr

[∑
i

pi|i〉〈i|log
∑
i

pi|i〉〈i|

]
= −

∑
i

pilogpi =

= H({pi}) (216)

where H({pi}) denotes the Shannon information entropy. Quite generally holds the
joint entropy theorem:

S(ρAB) = H({pi}) +
∑
i

piS(ρi) (217)

We apply the subadditivity property:

S(ρAB) ≤ S(ρA) + S(ρB) (218)

Thus, we gather:

H({pi}) +
∑
i

piS(ρi) ≤ S(
∑
i

piρi) +H({pi}) (219)

⇓∑
i

piS(ρi) ≤ S(
∑
i

piρi) (220)
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2.3 Quantum relative entropy

In the following we will consider quantum relative entropy in analogy to classical relative
entropy. Let be p(x) and q(x) two probability distributions. Now we define an entropy
measure H(p(x)||q(x)) for the ”closeness” of the two distributions p(x) and q(x):

H(p(x)||q(x)) :=
∑
x

p(x) log
p(x)
q(x)

= −H(p(x))−
∑
x

p(x) log q(x) (221)

Theorem 4. Non-negativity of relative entropy:

H (p(x)||q(x)) ≥ 0 (222)

If p(x) = q(x) ⇒ H(p(x)||q(x)) = 0.

Proof:

For ”log” we chose ”log2”. Then there exists a number x such that:

log2xln2 = lnx ≤ x− 1 (223)

⇓

−log2x ≥
1− x
ln2

(224)

Consequently, we have:

H(p(x)||q(x)) = −
∑
x

p(x)log2

q(x)
p(x)

≥ 1
ln2

∑
x

p(x)(1− q(x)
p(x)

) = (225)

=
1

ln2

∑
x

(p(x)− q(x)) =
1

ln2
(1− 1) = 0 q.e.d.

To consider the quantum case let be ρ, σ two density matrices. We define the relative
entropy S(ρ||σ) of ρ to σ:

S(ρ||σ) := trρ log ρ− trρ log σ (226)

This is an entropy-like measure for the ”closeness” of two density matrices.
We define the kernel of an operator:

kern σ = {v εH|σv = 0}, λ = 0 (227)

where v is an eigenvector, and λ is its eigenvalue. The support of an operator is defined
by:

supp ρ = {w εH|ρw = λw}, λ 6= 0 (228)

If we now consider entropy we get the following results:
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•
S →∞ if kern σ ∩ supp ρ 6= Ø nontrivial (229)

•
S <∞ if kern σ ∩ supp ρ = Ø trivial (230)

Let us consider a composite system ρ ε HAB and an uncorrelated system ρA⊗ρB. Then
we have the following lemma:

Lemma 2.

S(ρ||ρA ⊗ ρB) = S(ρA ⊗ ρB)− S(ρ) = S(ρA) + S(ρB)− S(ρ) (231)

Proof:

S(ρ||ρA ⊗ ρB) = trρ logρ− trρ logρA ⊗ ρB = −S(ρ)− trρ
(
logρA + logρB

)
=

= −S(ρ)− trA ρAlogρA − trB ρBlogρB = S(ρA) + S(ρB)− S(ρ) (232)

The entropy of the composite system ρ relative to the uncorrelated system ρA ⊗ ρB

corresponds to the change of the von Neumann entropies of ρ to ρA ⊗ ρB, i.e. the
information-loss when we trace over the subsystems.

Properties of relative quantum entropy

• non-negativity-theorem - Klein-inequality

S(ρ||σ) ≥ 0 ”=” if ρ = σ (233)

From this property follows the subadditivity of the von Neumann entropy:

0 ≤ S(ρ||ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρ)

⇓

S(ρ) ≤ S(ρA) + S(ρB) (234)

• The relative quantum entropy invariant with respect to unitary transformations:

S(UρU †||UσU †) = S(ρ||σ) (235)

where UU † = 1

• The relative quantum entropy is jointly convex:

S(ρ||σ) = λS(ρ1||σ2) + (1− λ)S(ρ2||σ2) (236)

for 0 ≤ λ ≤ 1, ρ = λρ1 + (1− λ)ρ2 and σ = λσ1 + (1− λ)σ2.
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• Tracing over both subsystems reduces the relative entropy:

S(ρA||σA) ≤ S(ρ||σ) (237)

where ρA = trBρ and σA = trBσ. In particular if ρ = ρA ⊗ ρB:

S(ρA||σA) = S(ρA ⊗ ρB||σA ⊗ ρB) (238)

Proof:
S(ρA ⊗ ρB||σA ⊗ ρB) =

= tr ρA ⊗ ρB log (ρA ⊗ ρB)− tr ρA ⊗ ρB log (σA ⊗ ρB) =

= tr ρA ⊗ ρB log ρA − tr ρA ⊗ ρB log σA =

= trA ρA log ρA − trA ρA log σA = S(ρA||σA)

2.4 Quantum linear entropy

The quantum linear entropy is a measure for the mixedness of a state. It is defined by:

Slin(ρ) = tr(ρ− ρ2) = 1− trρ2 (239)

with the property 0 ≤ Slin ≤ 1 and Slin ≤ 0 for pure states. For d dimensions we get:

Slin(ρ) = 1− 1
d

(240)

2.5 Measurement and entropy

We are now interested in the behaviour of a quantum system under a measurement. In
the following we will consider projective measurements.

Let us consider an observable A. It is a hermitian operator onto a state space. There
exists a spectral decomposition:

A =
∑
i

aiPi (241)

where Pi are projectors onto eigenstates of A with the properties:

Pi = |i〉〈i| , P 2
i = Pi , P †i = Pi ,

∑
i

Pi = 1 (242)

The eigenequation of the eigenstates of A with eigenvalues ai is given by:

A|i〉 = ai|i〉 (243)

For the probability of measuring an eigenvalue ai in a general state |ψ〉 we gather:

pi = 〈ψ|Pi|ψ〉 = 〈ψ|i〉〈i|ψ〉 = |〈i|ψ〉|2 (244)
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We are now interested in the outcome of ai after the measurement. Before the measure-
ment the system is in state |ψ〉. After the measurement it is in the following state:

1
√
pi
Pi|ψ〉 =

|i〉〈i|ψ〉
|〈i|ψ〉|

= ci|i〉 (245)

where ci ε C is the phase and |i〉 is eigen-state. The expectation value of the observable
A is given by:

〈A〉 = 〈ψ|A|ψ〉 =
∑
i

ai〈ψ|Pi|ψ〉 =
∑
i

piai (246)

Within the density matrix formalism, the initially state ρ = |ψ〉〈ψ| is after measurement
the following state:

1
pi
Pi|ψ〉〈ψ|Pi =

1
pi
PiρPi = |i〉〈i| = ρi (247)

The state after the measurement process ρ′ is defined by:

ρ′ =
∑
i

pi|i〉〈i| =
∑
i

pi
1
pi
PiρPi =

∑
i

PiρPi (248)

Question:

How does the entropy behave under measurement?

Answer:

It depends on the kind of measurement - the entropy may increase or decrease.

Theorem 5. Projective measurements increase entropy!

To be more precise: Let be {Pi} projection operators of a complete orthogonal system
and ρ a density matrix of the state of the system. Then the density matrix of the state
after the measurement is given by:

ρ′ =
∑
i

PiρPi (249)

The entropy fulfills the following inequality:

S(ρ′) ≥ S(ρ) ”=” if ρ′ = ρ (250)

Proof:

To prove this inequality we apply the Klein inequality:

0 ≤ S(ρ||ρ′) = tr ρ log ρ− tr ρ log ρ′ = −S(ρ)− tr ρ log ρ′ (251)
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So we only have to prove that −tr ρ log ρ′ = S(ρ′):

−tr ρ log ρ′ = −tr
∑
i

Piρ log ρ′ = −tr
∑
i

PiPiρ log ρ′ =

= −tr
∑
i

Piρ log ρ′Pi = −tr
∑
i

PiρPi log ρ′ = −tr ρ′ log ρ′ = S(ρ′)

Remark:

However, generalized measurements can decrease entropy! For example let us consider
a qubit in state ρ that is measured by two operators M1 and M2 which are defined like
following:

M1 = |0〉〈0| , M2 = |0〉〈1| (252)

The result of the measurement is unknown; the state after measurement is given by:

ρ′ = M1ρM
†
1 +M2ρM

†
2 (253)

Here the entropy can decrease. F.i. chose the totally mixed state:

ρ =
1
2
1 (254)

⇒ the entropy before the measurement S(ρ) = 1. After the measurement the density
matrix is given by:

ρ′ =
1
2
|0〉〈0|1|0〉〈0|+ 1

2
|0〉〈1|1|1〉〈0| = |0〉〈0| (255)

Thus, for the entropy after the measurement we gather:

S(ρ′) = S(|0〉〈0|) = 0 (256)

3 Open quantum systems

3.1 Classical analogy

The time evolution of a quantum system described by a state ρ is given by the von
Neumann-equation:

∂

∂t
ρ(t) = − i

~
[H, ρ] (257)

The classical analogy to this equation is the Liouville-equation for the probability of the
density ρ(q, p, t) in a phase space (q, p) of a statistical system:

∂

∂t
ρ = {H, ρ} (258)

with the Poisson brackets:
{ , } =

∂

∂q

∂

∂p
− ∂

∂p

∂

∂q
(259)
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The general equation of motion in statistical mechanics is described by the Liouville-
equation:

∂

∂t
ρ(t) = Lρ(t) (260)

where L is the so-called Liouville-operator. It has the formal solution:

ρ(t) = Te
[
∫ t
t0
L(t′)dt′]

ρ(t0) (261)

3.2 Open quantum system - dynamics

In reality a quantum system S is always coupled to environment E via interactions -
there is no isolated system. In the physical description we consider the environment E
as a reservoir with infinite degrees of freedom, for example like a heat bath (in case of
thermal equilibrium).

To study the dynamics of a quantum system in interaction with its environment (that
is what we call ”open quantum system”) we have to consider the total system S + E,
because the dynamis of subsystem S is determined by the dynamics of the total system.
The total Hilbertspace is constructed by the tensor product:

H = HS ⊗HE (262)

The total Hamilton-operator has the following form:

H(t) = HS ⊗ 1E + 1S ⊗HE +HI(t) (263)

where HS is the Hamiltonian of the open system, HE is the Hamiltionian of the envi-
ronment and HI(t) denotes the interaction between system and environment.

All observables refer to a subsystem S of the form:

A⊗ 1E with A ε HS (264)

The density matrix of the system ρS - which is of central interest for us - we obtain by
tracing over the environment E:

ρS = trEρ (265)

The expectation value of A is represented by:

〈A〉 = trSρSA (266)

The total system S+E is closed and therefore follows a unitary t-evolution. The unitary
time-evolution is determined by the operator:

U(t, t0) = Te
−i
∫ t
t0
H(t)dt (267)

Thus, we can write the evolution of the density matrix of the reduced system in the
following way:

ρS(t) = trEU(t, t0)ρ(t0)U t(t, t0) (268)
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For a closed system we know that: ∂
∂tρ(t) = −i[H(t), ρ(t)], (~ = 1). Thus, with tracing

over the environment we get the equation of motion for the density matrix of the system:

∂

∂t
ρS(t) = −itrE [H(t), ρ(t)] (269)

An example for the open quantum system description is an atom (system) in an external
electromagnetical field (environment).

3.3 Dynamical map, Operator sum representation, quantum dynamical
semigroups

Let us suppose that at t = 0 the system and the environment are uncorrelated. Therefore,
the density operator can be described by a tensor product of ρS and ρE :

ρ(0) = ρS(0)⊗ ρE (270)

From the chapter above we already know the time-evolution of the reduced system:

ρS(0) → ρS(t) = V (t)ρS(0) ≡ trEU(t, 0)ρS(0)⊗ ρEU t(t, 0) (271)

where V (t): HS → HE is called dynamical map. In the following we will show that a
dynamical map V (t) can be completely characterized by operators action on HS . There-
fore let us consider the spectral decomposition of the density matrix of the environment
ρE :

ρE =
∑
k

pk|φk〉〈φk| (272)

where 0 ≤ pk ≤ 1 and
∑
pk = 1.

We can visualize the evolution in the following diagram:

ρ(0) = ρS(0)⊗ ρE →U(t,0)

unitary time-evolution ρ(t) = U(t, 0)ρS(0)⊗ ρEU †(t, 0) (273)

↓ trE

ρS(0) →V (t)

dynamical map ρS(t) = V (t)ρS(0)

For the overall density matrix ρ of S + E we can choose that

• at beginning t = 0 the density matrix is given as a pure product state:

ρ(0) = ρS(0)⊗ ρE (274)

• at t = 0 the environment represents a pure state - this is experimentally achievable
and simplifies our discussions:

ρE = |φ0〉〈φ0| (275)
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Then we consider the unitary time-evolution of the total system S + E and study its
effects on the system by tracing over E.

ρtot → UρS(0)⊗ ρEU †

⇓

ρS = trEρ →
∑
k

〉φk|UρS(0)⊗ |φ0〉〈φ0|U †|φk〉

where {|φk〉} denote the complete states of the environment.

We introduce operators on HS - the so-called Kraus-operators:

Wk =: 〈φk|U |φ0〉 (276)

W †k =: 〈φ0|U †|φk〉

with the property∑
k

W †kWk =
∑
k

〈φ0|U †|φk〉〈φk|U |φ0〉 = 〈φ0|U †U |φ0〉 = 〈φ0|1S+E |φ0〉 = 1S (277)

Then we find for the dynamical map - the time evolution of the density matrix of the
system - a representation in terms of a sum of Kraus-operators:

ρS(0) →
∑
k

Wkρ
S(0)W †k = V [ρS(0)] = ρS(t) (278)

Properties of the dynamical map V (t):

• The dynamical map V (t) is trace conserving.

trSρ
S(t) = trSV [ρS ] = trS

∑
k

Wkρ
S(0)W †k = trSρ

S(0) (279)

• V (t) is a convex linear map.

V (t)
∑
i

piρi =
∑
i

piV (t)ρi ,
∑
i

pi = 1 → convex sum (280)

• The dynamical map V (t) is completely positive.

V (t)⊗ 1n ≥ 0 on HS ⊗Cn (281)

Remark:

Let be a map V (t)[ρ] ≥ 0 for all ρ ≥ 0 and for all t ≥ 0 on a finite dimensional
complex Hilbert space. Then the map V is completely positive if the extention

Vn(t) = V (t)⊗ 1n (282)
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defined on H⊗Cn for all n is positive

Vn(t)[ρ⊗ ω] = V (t)[ρ]⊗ ω ≥ 0 (283)

for all ρ ε H and for all ω ε Cn.

Theorem 6. V (t) is completely positive ⇔ V (t)⊗ V (t) ≥ 0 is positive.

This theorem is important for entangled systems, a counter example to complete posi-
tivity is the partial transposition.

Let us now assume that the characteristic time scale of the environment is much smaller
than the characteristic time scale of the system τE � τS , so to say, that the memory
effects of the system about the environment are negligible (classical ”Markov process”).
The characteristic time scales are determined by some correlation functions proportional
to e

− t
τE in case of the environment and e

− t
τS in case of the system.

Then the dynamical map V forms a semigroup:

V (t1)V (t2) = V (t1 + t2) where t1, t2 ≥ 0 (284)

We construct a generator of the semigroup:

V (t) = eLt (285)

⇓

ρS(t) = V (t)ρS(0) = eLtρS(0) (286)

and find a so-called master equation:

∂

∂t
ρS(t) = LρS(t) (287)

in analogy to the classical Liouville-equation discussed in the beginning.

3.4 Measurement process - dynamical map

Resumée:

For the dynamical map of the density matrix there exists an operator decomposition. In
the open quantum system formulation we consider a quantum system S in interaction
with its environment E. We can assume that at the beginning t = 0:

• The density matrix of S + E is represented by a product state:

ρ(0) = ρS(0)⊗ ρE (288)
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• The density matrix of the environment is a pure state:

ρE = |φ0〉〈φ0| (289)

where {|φk〉} form a completely orthogonal system.

Visualized in a diagram:
ρ(0) → UρS(0)⊗ ρEU † (290)

↓ trE
ρS(0) →

∑
k

〈φk|U(t)ρS(0)⊗ |φ0〉〈φ0|U(t)†|φk〉 (291)

With the Kraus-operator Wk

Wk =: 〈φk|U(t)|φ0〉 (292)

the master-equation can finally be written as:

ρS(t) =
∑
k

Wk(t)ρS(0)W †k (t) = V (t)[ρS(0)] (293)

The master-equation fulfills the following properties:

• trace conserving

• convex linear

• completely positive map

von Neumann measurement, projective measurement

Let us consider the observable A =
∑

n anPn with the eigen-values an and the projection-
operator Pn = |n〉〈n|, P 2

n = Pn,
∑

n Pn = 1 with the eigen-equation: A|n〉 = an|n〉. The
expectation value of A is given by:

〈A〉 = trρSA =
∑

pnan (294)

where pn = trρSPn is the probability for an eigen-value an.

The von Neumann-measurement or projective measurement looks like the following:

ρS →
∑
n

pn|n〉〈n| =
∑
n

Pnρ
SP †n (295)

For measurement of this type the Kraus-operator is identical to the projection operator.

Wk ≡ Pn (296)

Positive Operator Value Measurements POVM

We again consider the total system S + E with some interaction S ↔ E. We define
an unitary operator U such that at the same time:
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• apply operator Mn on system S: |ψ〉 → Mn|ψ〉 with |ψ〉, Mn|ψ〉 ε HS

• state of environment changes |e0〉 → |en〉, where {|en〉} ε HE :

So the operation can be written as:

U(|ψ〉 ⊗ |e0〉) =
∑
n

Mn|ψ〉 ⊗ |en〉 (297)

where Mn has to fulfill the following property (normalization):

1 = 〈e0|〈ψ|U †U |ψ〉|eo〉 =
∑
m,m′

〈em′ |〈ψ|M †m′Mm|ψ〉|em〉 =
∑
m

〈ψ|M †mMm|ψ〉 (298)

⇓∑
m

M †mMm = 1 (299)

In the method of the Positive Operator Valued Measurements POVM we measure the
state of the environment by an operator B:

B = 1S ⊗
∑
n

bn|en〉〈en| =
∑
n

bnP
E
n (300)

The expectation value of B is given by:

〈B〉 = trρSEB = trU |ψ〉|e0〉〈e0|〈ψ|U †1S ⊗
∑
n

bn|en〉〈en| =

[tr|ψ〉〈ϕ| = 〈ϕ|ψ〉]

= 〈e0|〈ψ|U †1S ⊗
∑
n

bn|en〈en|U |ψ〉|e0〉 =
∑
n

pnbn (301)

where pn denotes the probability to get the measurement-result bn.

pn = 〈e0|〈ψ|U †1S ⊗ |en〉〈|U |ψ|e0〉 =

=
∑
m,m′

〈em′ |〈ψ|M †m′1S ⊗ |en〉〈en|Mm|ψ〉|em〉 = 〈ψ|M †nMn|ψ〉 (302)

The effect of the measurement process is the following:

ρSE0 →
∑
n

pn|ψSEn 〉〈ψSEn | (303)

↓ trE

ρS = |ψ〉〈ψ| → trE
∑
n

Mn|ψ〉|en〉〈en|〈ψ|M †m =
∑
n

Mnρ
SM †m (304)

For this type of measurement the Kraus-operator is identical to Mn:

Wn ≡Mn (305)
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3.5 Quantum channels - dynamical maps

Let us now consider a quantum operation with a spin- 1
2 particle. Alice transmits such

a particle to Bob:
Alice  Bob (306)

There exists a noise caused by the interaction of the particle with the environment. In
the following we will discuss different processes of this intereaction, the so-called quan-
tum channels and the corresponding dynamical maps.

Depolarising channel

The first quantum channel we consider is the depolarising channel. This is a process
with contributions from a total mixture:

ρ → p
1
2
1+ (1− p)ρ (307)

where p is the probability for an error and (1−p) is the probability that the initial qubit
remains O.K.

The dynamical map of this channel is given by:

V [ρ] =
p

2
1+ (1− p)ρ (308)

To find out how the Kraus-operators look like we use the following lemma:

Lemma 3.
1
2

(1ρ1+−→σ ρ−→σ ) = 1 (309)

In general we can decompose the density matrix for qubits as:

ρ =
1
2

(1 +−→a · −→σ ) (310)

where −→a is the Bloch-vector. Inserting Lemma 2 we get for the dynamical map:

V [ρ] =
p

2
1
2

(1ρ1+−→σ ρ−→σ ) + (1− p)1ρ1 = (311)

=
p

4
−→σ ρ−→σ + (1− 3p

4
)1ρ1 =

p′

3
−→σ ρ−→σ + (1− p′)1ρ1

where p′ = 3p
4 . Thus the Kraus-Operators are given by:

W0 =
√

1− p′1 (312)

Wi =

√
p′

4
σi

The Bloch-sphere shrinks by the factor (1− p).
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Bit-flip channel

The Bit-flip channel describes the process where spins are flipped:

| ↑〉 → | ↓〉 analogous: |0〉 → |1〉

| ↓〉 → | ↑〉 analogous: |1〉 → |0〉 (313)

Thus we have for the dynamical map of this process:

V [ρ] = p σxρσx + (1− p)ρ (314)

The Kraus-operators are given by:

W0 =
√
p1 (315)

W1 =
√
pσx

For this case the Bloch-sphere is invariant in x. In y, z it is shrinking by the factor (1−2p).

Phase-flip channel

The Phase-flip channel describes the process where the spin obtains phases:

| ↑〉 → | ↑〉

| ↓〉 → − | ↓〉 (316)

Then the dynamical map for this process can be expressed by:

V [ρ] = p σzρ σz + (1− p)ρ (317)

with the Kraus-operators:
W0 =

√
1− p1 (318)

W1 =
√
p σz

For this case the Bloch-sphere is invariant in z. In x, y it is shrinking by the factor (1−2p).

Bit-flip-phase channel

The Phase-flip channel describes the process where the spin obtains phases:

| ↑〉 → i| ↓〉

| ↓〉 → − i| ↑〉 (319)

The dynamical map for this process is given by:

V [ρ] = p σyρ σy + (1− p)ρ (320)
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with the Kraus-operators:
W0 =

√
1− p1 (321)

W1 =
√
p σy

For this case the Bloch-sphere is invariant in y. In z, x it is shrinking by the factor (1−2p).

Amplitude damping channel

The amplitude damping channel describes the process where the spin decays | ↓〉 →
| ↑〉 via emission of a photon:

ρ↓ = | ↓〉〈↓ | → | ↑〉〈↑ | = ρ↑ (322)

Explicitly:
σ+ ρ↓ σ− = | ↑〉〈↓ | ↓〉〈↓ | ↓〉〈↑ | = | ↑〉〈↑ | = ρ↑ (323)

with σ+ =
(

0 1
0 0

)
and σ− =

(
0 0
1 0

)
. Thus, one Kraus-Operator will be:

W1 =
√
p σ+ (324)

From the normalization follows the other Kraus-operator:∑
i

W †iWi = 1 (325)

p

(
0 0
1 0

)(
0 1
0 0

)
+
(
a 0
0 b

)
=
(

1 0
0 1

)
⇓

a = 1 , b = 1− p

⇓

W0 =
(

1 0
0
√

1− p

)
(326)

For the dynamical map we finally have:

V [ρ↓] =
(

1 0
0
√

1− p

)
ρ↓

(
1 0
0
√

1− p

)
+ p

(
0 1
0 0

)
ρ↓

(
0 0
1 0

)
=

= pρ↑ + (1− p)ρ↓ (327)
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3.6 Master Equation

In the following we’ll construct the most general form of the Liouville equation for a fi-
nite dimensional complex Hilbert-space HS with dimHS = N2. We will construct out of
Kraus-operators an equation which contains the Hamilton-operator (plus remaining oper-
ators). This method goes back to Lindblad 1976 and to Gorini-Kossakoneski-Sudarshan.

The master equation a la Lindblad is given by:

d

dt
ρS(t) = − i

~
[H, ρS(t)]−D[ρS(t)] (328)

where ρS is the density matrix of the system and D[ρS ] is the so-called dissipator:

D[ρS ] =
1
2

N2−1∑
k=1

λk

(
A†kAkρ

S + ρSA†kAk − 2AkρSA
†
k

)
(329)

The dissipator can be rewritten:

D[ρS ] =
1
2

∑
k

λk([A
†
k, Akρ

S ] + [ρSA†k, Ak]) (330)

with the Lindblad-operators Ak and the (positive) decoherence constants λk ≥ 0 which
are a quantitative measure for decoherence.

Remark:
Here we assume a weak coupling limit between the system and the environment:

H ≡ HS+E = HS +HE +Hint (331)

For HE , Hint → 0 ⇒ H = HS .

Proof of the Lindblad-master-equation:

We consider the dynamical map for the time-evolution of the density matrix of the
system:

ρS → V [ρS ] =
∑
k

Wkρ
SW †k (332)

with the Kraus-operator:
Wk = 〈φk|U |φ0〉 (333)

with the unitary operator U = e−
i
~Ht and the property

∑
kW

†
kWk = 1. As we know,

the dynamical map fulfills the following properties:

• trace conserving

• convex linear
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• completely positive

About the time evolution we make the following assumptions:

• The characteristic time scale of the system δt is much smaller than the lifetime of
the system τS :

δt� τS (334)

• The characteristic time scale of the environment τE should ”forget” about the
system, this is a so-called Markov process:

τE � δt (335)

For the proof we start from the dynamical map under the assumptions made above:

ρS(δt) = V [ρS(0)] =
∑
k

Wkρ
S(0)W †k = ρS(0) +O(δt) (336)

We see: First Kraus-operator ∼ 1S +O(δt), all further Kraus-operators ∼ O(δt). Under
these conditions we construct:

W0 = 1S +
(
K − i

~
H

)
δt (337)

Wk = Ak
√
δt

where K and H are hermitian operators and Ak is the Lindblad operator. From the
normalization we get:

∑
k

W †kWk = 1S +

(
2K +

∑
k

A†kAk

)
δt+O(δt2) (338)

⇓

K = −1
2

∑
A†kAk (339)

Thus, we find for the time evolution of the system S:

ρS(δt) = W0ρ
SW †0 +

∑
Wkρ

S(0)W †k =

=
(
1S +

(
K − i

~
H

)
δt

)
ρS(0)

(
1S +

(
K +

i

~
H

)
δt

)
+ δt

∑
k

Akρ
S(0)A†k =

= ρS(0) + δt{− i
~
[
H, ρS(0)

]
− 1

2

(∑
A†kAkρ

S(0) + ρS(0)A†kAk − 2AkρS(0)A†k
)
} (340)

⇓

limδt→0
ρS(δt)− ρS(0)

δt
=

d

dt
ρS(t)|t=0 = − i

~
[H, ρS(t)]|t=0 −D[ρS(t)]|t=0 (341)
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Note:
Here we have derived Eq. (341) at t = 0 but it holds for any time and we have rescaled
Ak →

√
λkAk.

Remarks:

• ∃ 1 Kraus-operator ⇔ @ Lindblad operator. ⇒ For λk = 0 there is no interaction.
For this case H is the Hamiltonian of the system: H = HS and in the limit of
weak coupling we also have H → HS since Hint → 0.

• The Hamiltonian is not unique, the master equation is invariant under the opera-
tion:

Ak → Ak + ak1S

H → H +
1
2i

∑
k

(a∗kAk − akA
†
k) + b1S

Furthermore, the dissipator is invariant under unitary transformations

Ak → UAk

where UU † = 1.

• The right hand side of the equation is linear functional in ρS :

d

dt
ρS(t) = L[ρS ] (342)

formally:

ρS(t) = Te
∫ t
0 L(t)dtρS(0) = eLtρS(0) where L is constant (343)

ρS(t) = V (t)ρS(0)→ V (t) = eLt

3.7 Example: Spontaneous emission

Let us consider an atom with two energy levels. The Hamilton operator is given by:

H = −~ω
2
σz (344)

Then we have for the ground state |0〉 and for the excited state |1〉 the following energy-
eigenequations:

H|1〉 =
~ω
2
|1〉 (345)

H|0〉 = −~ω
2
|0〉

The energy difference between the excited state and the ground state is equal to the
energy of the spontaneously emitted photon:

E1 − E0 = ~ω (346)
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The transition operator (emission operator) which causes the transition from |1〉 to |0〉
is given by:

σ+ = |0〉〈1| (347)

⇓

σ+|1〉 = |0〉〈1|1〉 = |0〉 (348)

Thus we chose as Lindblad operator:

A1 =
√

Γσ+ (349)

A†1 =
√

Γσ−

where Γ is the rate for the emission of a photon. It is inverse to the lifetime.

We consider a 2-dimensional Hilbert space:

|1〉 =
(

0
1

)
, |0〉 =

(
1
0

)
(350)

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
(351)

Therefore we finally obtain the following master equation describing the spontaneous
emission:

d

dt
ρ(t) = − i

~
[H, ρ]− 1

2
Γ(σ−σ+ρ+ ρσ−σ+ − 2σ+ρσ−) (352)

To find the solutions of the master equation, firstly we calculate the components of the
terms of the dissipator:

σ−σ+ρ =
(

0 0
ρ10 ρ11

)
, σ+ρ σ− =

(
ρ11 0
0 0

)
, ρ σ−σ+ =

(
0 ρ01

0 ρ11

)
(353)

Thus, for the master equation in components we gather:

d

dt

(
ρ00 ρ01

ρ10 ρ11

)
= iω

(
0 ρ01

−ρ10 0

)
+ Γ

(
ρ11 −1

2ρ01

−1
2ρ10 −ρ11

)
(354)

With ˙ρ00 = Γρ11 and ˙ρ11 = −Γρ11 we get the solutions for the diagonal-elements of the
density matrix:

ρ11(t) = ρ11(0)e−Γt (355)

⇓

˙ρ00(t) = Γρ11(0)e−Γt (356)

⇓

ρ00(t) = ρ00(0) + ρ11(0)(1− e−Γt) (357)
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For the off-diagonal elements we get the following solutions:

ρ01(t) = ρ01(0)e+iωt−Γ
2
t (358)

ρ10(t) = ρ10(0)e−iωt−
Γ
2
t

Remark:
The mean decay time is T1 = 1

Γ . The excited state decays with the probability e−Γt and
the probability for the ground state increases with (1− e−Γt). The lifetime of coherence
is T2 = 2

Γ , twice as large as the mean decay time: T2 = 2T1

The emission process corresponds to the amplitude damping channel.

3.8 Master Equation for decoherence via scattering process

Let us assume that the dynamics of the system is separable from the environment, so to
say that HI is small, i.e. the typical time of scattering τE � τS .

We make the following ansatz:

i
∂ρ

∂t
= [HS , ρ] + i

∂ρ

∂t
|scatt (359)

Question:

Why are macroscopic objects localized in space? ⇒ The coherence of macroscopic ob-
jects at different positions is destroyed by scattering.

Description of scattering:

Let our object be in state |a〉. It is localized at x in eigen-state |x〉. We describe
the process of scattering as follows:

|x〉|a〉 →t |x〉Sx|a〉 (360)

where Sx denotes the scattering matrix. If we have initially a wave-packet, it evolves as:∫
d3xϕ(x)|x〉|a〉 →t

∫
d3xϕ(x)|x〉Sx|a〉 (361)

The reduced density matrix in x-space can be written as:

ρ =
∫
dxdx′ρ(x, x′, t)|x〉〈x′| (362)

Analogeously to discrete space:

ρ =
∑
m,n

ρmn|m〉〈n| with ρmn = 〈m|ρ|n〉 (363)
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The matrix element after scattering is given by:

ρ(x, x′, t) = 〈x|ρ|x′〉 =

= tr〈x|
∫
dydy′ϕ(y)|y〉Sy|a〉〈a|S†y〈y′|ϕ ∗ (y′)|x′〉 = ϕ(x)ϕ ∗ (x′)〈a|S†x′Sx|a〉 (364)

where we take the trace over the scattered states Sy|a〉. For the single scattering process
we get: x′ → x⇒ ρ(x, x′, t)→ 1. So there is no scattering. If there are many scatterings
they add up to an exponential damping of the non-diagonal elements of ρ(x, x′, t):

ρ̇(x, x′, t)|scatt = −Λρ(x, x′, t)|scatt = −Λ(x− x′)2ρ(x, x′, t)|scatt (365)

where we extracted a factor (x− x′)2 since ρ̇ → 0 for x′ → x (no scattering).

⇓

ρ(x, x′, t)|scatt = ρ(x, x′, 0)|scatte
−Λt(x−x′)2

(366)

where the localization rate Λ is given by:

Λ = k2Nv

V
σeff (367)

k denotes to the wave number, v the velocity, Nv
V the incoming flux, while σeff is the

total cross section.

Example:

For example, a dust particle in air scattered by sunlight with a size of 10−3 cm ⇒
Λ = 1021.

Finally we arrive at the follwing master equation for scattering - decoherence:

i
∂

∂t
ρ(x, x′, t) =

[
1

2m

(
∂2

∂x′2
− ∂2

∂x2

)
+
mω2

2
(x2 − x′2)− iΛ(x− x′)2

]
ρ(x, x′, t) (368)

The first term stands for the kinetic part of the system, the second for the potential
part, an harmonic ascillator, and the third term represents the scattering part. Recall
the oscillator Hamiltonian:

H = − 1
2m

d2

dx2
+
mω2

2
x2 (369)

In operator version we get:

d

dt
ρ = −i[H, ρ]− Λ[x, [x, ρ]] (370)

We now extend our master equation (368), (370) to the Caldeira-Leggett-model: We
consider a system weakly coupled to a heat-bath of oscillators in a high temperature limit.
We distinguish between decoherence and dissipation (loss of energy, loss of momentum):

∂

∂t
ρ = −i[H, ρ]− iγ

2
[x, {p, q}]− Λ[x, [x, ρ]] (371)
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i
∂

∂t
ρ(x, x′, t) =

[
1

2m

(
∂2

∂x′2
− ∂2

∂x2

)
+ iγ(x− x′)

(
∂

∂x′
− ∂

∂x

)
− iΛ(x− x′)

]
ρ(x, x′, t)

(372)
where γ is the damping constant which is proportional to inverse of the relaxation
time τ−1

R . The localization rate Λ is given by: Λ = 2γmkBt/~2. The proportion of
the decoherence time τD to the relaxation time τR for a particle with mass m and
temperature T is given by:

τD
τR

=
γ

Λ
1
δx2

=
~2

2mkBt
1
δx2

(373)

Example: m = 1g, T = 300K, δx = 1cm ⇒ τD
τR
≈ 10−40 → we see: dust is classical.

Decoherence is more important (≈ Λ) than dissipation (≈ γ).

Example: Schrödinger cats - Gaussion like wave-packets

At t = 0 let be 2 Gaussion wave packets, socalled Schrödinger cat states. Then the
density matrix ρ(x, x′, t = 0) is also Gaussian-like. There exists 4 peaks: 2 peaks main
diagonal (Schrödinger cat states) and 2 peaks off-diagonal. The off-diagonal-peaks are
responsible for coherence. See figure (1).

For t > 0: We gather ρ(x, x′, t) > 0 as a solution of the master equation. If there
exists decoherence the off-diagonal elements vanish with the exponential damping ρ =
ρ0e
−Λt(x−x′)2

. The main diagonal terms remain rather constant. See figure (2).

Figure 1: Density matrix of a superposition of two Gaussian wave packets,
the wave function is shown in the inset. Coherence between the two parts
of the wave function is represented by the two off-diagonal peaks. Source:
Claus Kiefer, Erich Joos: ”Decoherence: Concepts and Examples”, quant-
ph/9803052
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Figure 2: Density matrix of a superposition of two Gaussian wave packets, the
density matrix after interference is partially destroyed by decoherence. The
position distribution, along the diagonal, is not changed appreciably. Source:
Claus Kiefer, Erich Joos: ”Decoherence: Concepts and Examples”, quant-
ph/9803052

Illustration with Wigner function:

The Wigner function is given by:

W (x, p) =
1

2π

∫ ∞
−∞

dyeipyρ
(
x− y

2
, x+

y

2

)
(374)

The Fourier-transform of the shifted density matrix is a kind of ”probability” function
in phase space (x,p), not anymore positive definite! Typical features are:

• There exist oscillations for non-classical states.

• There don’t exist oscillation for classical states.

The Wigner functions for the above described Schrödinger cat states which shows deco-
herence are illustrated in Figure (3).
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Figure 3: The Wigner function equivalent to the density matrices shown in
Fig. (1), (2). (a) represents the superposition of two Gaussian wave packets.
Strong oscillations together with negative values indicate coherence between
the two wave packets. (b) oscillations are partially damped by decoherence.
Source: Claus Kiefer, Erich Joos: ”Decoherence: Concepts and Examples”,
quant-ph/9803052

3.9 Wigner Function

The Wigner function is a convenient tool, frequently used, to demonstrate the coherence
features of quantum states. It is defined by:

W (x, p) =
1

2π

∫ ∞
−∞

dyeipyψ∗
(
x+

y

2

)
ψ
(
x− y

2

)
(375)

i.e. the Fourier-transformation of shifted wave-packets, like a kind of ”probability” dis-
tribution - not positive definite anymore! We consider the density matrix representation:

ρ = |ψ〉〈ψ| (376)

ψ(x) = 〈x|ψ〉 , ψ∗(x) = 〈ψ|x〉

⇓

ψ∗(x′)ψ(x) = 〈ψ|x′〉〈x|ψ〉 = 〈x|ψ〉〈ψ|x′〉 = 〈x|ρ|x′〉 = ρ(x, x′)

Thus, for the Wigner function we get:

W (x, p) =
1

2π

∫ ∞
−∞

dyeipy〈x− y

2
|ρ|x+

y

2
〉 =

1
2π

∫ ∞
−∞

dyeipyρ
(
x− y

2
, x+

y

2

)
(377)

We now shift y
2 → y:

W (x, p) =
1
π

∫ ∞
−∞

dye2ipyρ(x− y, x+ y) (378)

56



The Wigner function has the following properties:

• For the integral over p we get the probability density in x-space:∫ ∞
−∞

dpW (x, p) =
∫ ∞
−∞

dy
1

2π

∫ ∞
−∞

dpeipy〈x− y

2
|ρ|x+

y

2
〉 =

= 〈x|ρ|x〉 = W (x) = 〈x|ψ〉〈ψ|x〉 = ψ(x)ψ∗(x) = |ψ(x)|2 (379)

• For the integral over x we get the probability density in p-space:∫ ∞
−∞

dxW (x, p) =
1

2π

∫ ∞
−∞

dx

∫ ∞
−∞

dyeipy〈x− y

2
|ρ|x+

y

2
〉 =

1
2π

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′e−ip(x
′−x′′)〈x′|ρ|x′′〉 =

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′〈p|x′〉〈x′|ρ|x′′〉〈x′′|p〉 =

= 〈p|ρ|p〉 = W (p) = ψ(p)ψ∗(p) (380)

• Normalization ∫ ∞
−∞

dx

∫ ∞
−∞

dpW (x, p) = 1 (381)

• The trace of the density matrix corresponds to an overlap of Wigner functions in
phase space.

Lemma 4.
trρ1ρ2 = 2π

∫ ∞
−∞

dx

∫ ∞
−∞

dpWρ1(x, p)Wρ2(x, p) (382)

Proof:
2π
∫ ∞
−∞

dx

∫ ∞
−∞

dpWρ1(x, p)Wρ2(x, p) =

=
∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dy′
1

2π

∫ ∞
−∞

dpeip(y+y′)〈x− y

2
|ρ1|x+

y

2
〉〈x− y′

2
|ρ2|x+

y′

2
〉 =

=
∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dy′δ(y + y′)〈x− y

2
|ρ1|x+

y

2
〉〈x− y′

2
|ρ2|x+

y′

2
〉 =

=
∫ ∞
−∞

dx

∫ ∞
−∞

dy〈x− y

2
|ρ1|x+

y

2
〉〈x+

y

2
|ρ2|x−

y

2
〉 =

=
∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′〈x′|ρ1|x′′〉〈x′′|ρ2|x′〉 =

=
∫ ∞
−∞

dx′〈x′|ρ1ρ2|x′〉 = trρ1ρ2
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• The Wigner function has negative values.

Proof:

Let be given 2 density matrices ρ1 and ρ2 so that trρ1ρ2 = 0 ⇒ according to
Lemma (4): ∫

dxdpWρ1(x, p)Wρ2(x, p) = 0 (383)

⇒ Wρ1(x, p) or/and Wρ2(x, p) must be negative for special values.

4 Kaonic Qubits

4.1 K-mesons

Neutral K-mesons (Kaons) are fundamental particles that consist of two quarks, namly
of a down-quark d and a strange-quark s. In the following we will write K0 for a Kaon
with quarkcontent (ds) and the anti-particle we denote by K0 with (ds). The mass of
a Kaon is about MK = 497MeV . The behaviour of Kaons is ruled by the following
quantum principles:

• superposition

• oscillation

• decay

• quasi spin

• regeneration

4.2 Quantum states of K-mesons

Quantum-mechanically we can describe Kaons in the following way, we characterize
them by quantum numbers. The eigen-equations of the strangeness-quantum-number
are given by:

S|K0〉 = +|K0〉 , S|K0〉 = −|K0〉 (384)

with strangeness operator S and strangeness eigen-values + and −.

Parity:
P |K0〉 = −|K0〉 (385)

Charge conjugation:
C|K0〉 = |K0〉 (386)

Charge conjugation - Parity:

CP |K0〉 = −|K0〉 , CP |K0〉 = −|K0〉 (387)
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We now construct eigen-states to the CP -operator:

|K0
1 〉 =

1√
2

(
|K0〉 − |K0〉

)
, |K0

2 〉 =
1√
2

(
|K0〉+ |K0〉

)
(388)

with the eigen-equations

CP |K0
1 〉 = +|K0

1 〉 , CP |K0
2 〉 = −|K0

2 〉 (389)

From experiments we know, that Kaons decay with different decay times and the physical
states we call KS (short-lived-state) and KL (long-lived-state). KS decays into two pions
with a decay-time of Γ−1

S = τS = 10−10s. KL decays into three pions with a decay-time of
Γ−1
L = τL = 5·10−8s. These states differ slightly in mass ∆m = mL−mS = 3, 49·10−6eV .

We also know that CP is violated due to weak-interactions with a probability of |ε| ≈
10−3. Thus, we can write the states |KS〉 and |KL〉 as superposition of |K0

1 〉 and |K0
2 〉:

|KS〉 =
1√
2

(
|K0

1 〉+ ε|K0
2 〉
)

, |KL〉 =
1√
2

(
ε|K0

1 〉+ |K0
2 〉
)

(390)

|KS〉 =
1
N

(
p|K0〉 − p|K0〉

)
, |KL〉 =

1
N

(
p|K0〉+ p|K0〉

)
(391)

where p = 1 + ε and q = 1− ε and N =
√
|p|2 + |q|2. The complex quantity ε is called

CP violating parameter.

4.3 Strangeness oscillation

The decay is given by the non-hermitian effective Hamiltonian H:

H = M − i

2
Γ (392)

where M and Γ are hermitian operators. M corresponds to the mass and Γ is the decay-
matrix.

The eigenequations of the effective Hamiltonian are satisfied by the states |KS〉 and
|KL〉:

H|KS,L〉 = λS,L|KS,L〉 (393)

with the energyeigen-values λS,L = mS,L − i
2ΓS,L where ΓS,L is the width of the states.

From the Schrödinger equation we get the Wigner-Weisskopf-approximation:

|KS(t)〉 = e−iλSt|KS〉 = e−
ΓS
2
te−imSt|KS〉 (394)

|KL(t)〉 = e−iλLt|KL〉 = e−
ΓL
2
te−imLt|KL〉

Since |K0〉 = N
2p(|KS〉 + |KL〉) and |K0〉 = N

2q (−|KS〉 + |KL〉) we have for the time-
evolution of the strangeness-states:

|K0(t)〉 = g+(t)|K0〉+
q

p
g−(t)|K0〉 (395)
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|K0(t)〉 =
p

q
g−(t)|K0〉+ g+(t)|K0〉

with g+,−(t) = 1
2 [±e−iλSt + e−iλLt]. Suppose that a K0-beam is produced at t = 0 then

there occur transitions from |K0〉 to |K0〉 with the following transitions-probabilities:

|〈K0|K0(t)〉|2 = g+(t)g∗+(t) =
1
4

[e−ΓSt + e−ΓLt − 2e−Γt cos(∆mt)] (396)

|〈K0|K0(t)〉|2 = g+(t)g∗+(t) (397)

|〈K0|K0(t)〉|2 =
|p|2

|q|2
g−(t)g∗−(t) =

1
4
|p|2

|q|2
[e−ΓSt + e−ΓLt + 2e−Γt cos(∆mt)] (398)

|〈K0|K0(t)〉|2 =
|q|2

|p|2
g−(t)g∗−(t) (399)

where ∆m = mL −mS and Γ = 1
2(ΓL + ΓS).

4.4 Quasi-Spin of Kaon - Photon analogy

We can introduce the quasi-spin (strangeness) of a Kaon in analogy to the spin of a
particle or to the polarization of a photon:

|K0〉 ↔ | ↑〉 ↔ |V 〉 (400)

|K0〉 ↔ | ↓〉 ↔ |H〉

|KS〉 ↔ | →〉 ↔ |L〉 (401)

|KL〉 ↔ | ←〉 ↔ |R〉

Attention:
〈KS |KL〉 =

2Reε
1 + |ε|2

= 2Reε (402)

Whereas:
〈L|R〉 = 0 (403)

where |L〉 = 1√
2
(|V 〉 − i|H〉) and |R〉 = 1√

2
(|V 〉 + i|H〉). Then we can describe the

Kaon-features with the Pauli-matrices and we can decompose the Hamilton-operator in
the following way:

H = a1+
−→
b −→σ (404)

In comparison with the effective Hamilton operator H = M − i
2Γ we get:

b1 = b cosα , b2 = b sinα (405)

b3 = 0 because of CPT-invariance

a = (λL + λS)
1
2

, b = (λL − λS)
1
2

(406)
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Because of the CP-violation the angle α corresponds to the parameter ε from chapter
4.2. via the following relation:

eiα =
1− ε
1 + ε

(407)

If we insert these relations we obtain for the Hamiltonian:

H = a1+ bσ1 + 2iεbσ2 (408)

4.5 Decoherence of entangled Kaons

Now let us describe and measure possible decoherence of entangled Kaons. Decoherence
provides us some information on the quality of the entangled state.

Experimentally a Bell-state is produced:

|ψ−〉 =
1√
2

(|e1〉 − |e2〉) (409)

with the following notation:

|e1〉 = |KS〉l ⊗ |KL〉r , |e2〉 = |KL〉l ⊗ |KS〉r (410)

where the indices l and r denote the left-moving and the right-moving particle and we
have chosen the eigenstates of the Hamiltonian. Thus, the density matrix is described
by:

ρ− = |ψ−〉〈ψ−| = 1
2

(|e1〉〈e1|+ |e2〉〈e2| − |e1〉〈e2| − |e2〉〈e1|) (411)

Possible decoherence arises from the interaction of the quantum system with its envi-
ronment. To study decoherence we therefore consider the master equation

d

dt
ρ = −iHρ+ iρH† −D[ρ] (412)

In our model the Lindblad-operators Aj act like projectors:

Aj =
√
λPj (413)

with j = 1, 2 and the projectors Pj = |ej〉〈ej |. The operators Pj project onto the eigen-
states of the 2-particle Hamiltonian H = Hl ⊗ 1r + 1l ⊗Hr. The solution of the master
equation provides the time dependence of the density matrix:

ρ(t) =
1
2
e−Γt

(
|e1〉〈e1|+ |e2〉〈e2| − e−λt (|e1〉〈e2|+ |e2〉〈e1|)

)
(414)

where λ is the decoherence parameter. Decoherence arises through the factor e−λt in
the off-diagonal elements. It means that for t > 0 the density matrix ρ(t) is not pure
any more but mixed.

Experimentally kaons are produced in particle colliders, e.g. at e+e−-collider DAΦNE,
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Frascati or at pp-collider LEAR, CERN. The Kaons produced in such an experiment are
entangled and detected with respect to their strangeness.

For the actual experiment let us consider the case:

K0 will be measured at the left hand side at time tl

K0 will be measured at the right hand side at time tr

and tl ≥ tr. Then the probability of such a measurement is calculated by

P (K0, tl;K0, tr) = trl{|K0〉〈K0|ltrr[1l ⊗ |K0〉〈K0|rρ(tr)]} (415)

Analogously can be calculated the case K0 left and K0 right. The result for the proba-
bilities is:

Pλ(K0, tl;K0, tr) = Pλ(K0, tl;K0, tr) = (416)

=
1
8

(
e−ΓStl−ΓLtr + e−ΓLtl−ΓStr + e−λtr2cos(∆m∆t) · e−Γ(tl+tr)

)
Pλ(K0, tl;K0, tr) = Pλ(K0, tl;K0, tr) = (417)

=
1
8

(
e−ΓStl−ΓLtr + e−ΓLtl−ΓStr − e−λtr2cos(∆m∆t) · e−Γ(tl+tr)

)
with ∆t = tl − tr. Note that at equal times tl = tr = t the like-strangeness probabilities

Pλ(K0, t;K0, t) = Pλ(K0, t;K0, t) =
1
4
e−2Γt(1− e−λt) (418)

do not vanish, in contrast to the pure quantum mechanical EPR-correlations. The inter-
esting quantity is the asymmetry of probabilities; it is directly sensitive to the interference
term and can be measured experimentally. For pure quantum mechanics we have

AQM (∆t) =

=
P (K0, tl;K0, tr) + P (K0, tl;K0, tr)− P (K0, tl;K0, tr)− P (K0, tl;K0, tr)

P (K0, tl;K0, tr) + P (K0, tl;K0, tr) + P (K0, tl;K0, tr) + P (K0, tl;K0, tr)
=

=
cos(∆m∆t)

cosh(1
2∆Γ∆t)

(419)

with ∆Γ = ΓL−ΓS , and for our decoherence model we find, by inserting the probabilities
(416), (417),

Aλ(tl, tr) =
cos∆m∆t

cosh(1
2∆Γ∆t)

e−λmin{tl,tr} = AQM (∆t)e−λmin{tl,tr} (420)

Thus, the decoherence effect, simply given by the factor e−λmin{tl,tr}, depends only on
the time of the first measured kaon, in our case: min{tl, tr} = tr.
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Experiment

Now we compare our model with the results of the CPLEAR experiment at CERN where
K0K0 pairs are produced in the pp-collider: pp→K0K0. These pairs are prodominantly
in an antisymmetric state with quantum numbers JPC = 1− and the strangeness of the
kaons is detected via strong interactions in surrounding absorbers (made of copper and
carbon). The experimental set-up has two configurations. In configuration C(0) both

Figure 4: Set-up of the CPLEAR-Experiment Source: R. A. Bertlmann: ”En-
tanglement, Bell Inequalities and Decoherence in Particle Physics”, quant-
ph/041028

kaons propagate 2 cm, they have nearly equal proper times (tr ≈ tl) when they are mea-
sured by the absorbers. This fulfills the condition for an EPR-type experiment. In con-
figuration C(5) one kaon propagates 2 cm and the other kaon 7 cm, thus, the flight-path
difference is 5 cm on average, corresponding to a proper time difference |tr− tl| ≈ 1.2τS .

Fitting the decoherence parameter λ by comparing the asymmetry with the experi-
mental data we find, when averaging over both configurations, the following bounds on
λ:

λ = (1.84+2.50
−2.17) · 10−12MeV and Λ =

λ

ΓS
= 0.25+0.34

−0.32 (421)

The results are certainly compatible with quantum mechanics (λ = 0), nevertheless, the
experimental data allow an upper pound λup = 4.34 cot 10−12 MeV for possible decoher-
ence in the entangled K0K0 system. But this decoherence is small Λ = 0.25 + 0.34 < 1.

Summary:

From the data we see the Kaons are still entangled although they extended over a
macroscopic distance of about 7 cm. They form a quantum system of massive particles
with a mass of about 1 GeV.
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Figure 5: Data from the CPLEAR-Experiment, The asymmetry as a function of
the distance of the kaons. Source: R. A. Bertlmann: ”Entanglement, Bell
Inequalities and Decoherence in Particle Physics”, quant-ph/041028
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