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Vacuum Medium
* For an energetic parton produced at the hard * Assuming the medium is a homogenous brick
interaction, the bremsstrahlung spectrum is of length L
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Jet production is suppressed

“Jets quench?”



* The most important scale to characterize the radiation
process is the formation time

*  Physically, 7, defines the resolution scale of the medium. If
7, = 0, the medium has an infinite resolution while for

7r = O(o0) the medium is completely opaque.

* Osets a minimum angular scale = unlike vacuum, no collinear singularity in the medium



* For the gluon to be formed inside the medium, we require 7, < L

* For the high energy parton traversing the medium, we may further associate a mean free path A
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multiple “incoherent emissions” with the medium



multiple scattering centres act coherently until the radiation is resolved by the medium



* During the formation time, multiple scattering centres act coherently. This yields a medium-induced
spectrum of the radiation.

* The radiation formation time, together with the transverse momentum broadening defines the LPM time
scale
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and the radiation spectrum can be written as
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* Jets are multi-scale objects.

How is energy transported from energetic parton to low momenta and dissipated in the QGP ?
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* Study the substructure of a jet by looking at observables designed to probe separately the various regimes.



* Angularities are a class of jet substructure observables that characterize the angular and momentum
distribution of partons inside a jet through a continuous free parameter a

* In pp collisions, the jet angularity is defined as

1 L AR\ > >
Ta =" P » where AR;; = \/(Anﬂ) + (A, ;)~,
* Varying the exponent ‘a’ changes the sensitivity of the observable to collinear and soft radiation in the
jet.

* Fora < 1, the observable weighs collinear radiation more strongly while for a close to 1, the effect of soft
radiation to the measured value of the observable cannot be ignored.

* We focus on ungroomed jet angularities with a sufficiently away from 1 in this talk.
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Talk by Marta Verweij, ECT* Jet quenching in the QGP

* Splitting fraction with larger z_,, is not modified much.

* Observables sensitive to angular distributions show a narrowing of the jet core in the medium.



* SCET has no quenching effects so we need extra degrees of freedom to allow for jet-medium interactions;
Achieved via off-shell modes thought to be generated from color gauge fields in the medium

* Consider the medium sources as static which scale as ~ (1,1,1). Soft scatterings of the jet parton with
medium constituents = t-channel dominance; Glaubers
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. Treat Glaubers as background fields generated from colour charges in the QGP p, ~ QA% A%, ) 3 A ~ —
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* Glauber gluons interact with both collinear p, ~ 0(1%,1,0) and soft p¢ ~ Q(A?79, 1274, 129
modes of the theory ; 4 ~ 7

* The Lagrangian in terms of collinear and Glauber field is [Ovanesyan and Vitev]
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* The interaction between jet and medium is approximated by a screened potential
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* To see the LPM effect, we require minimum two scattering sources. To leading order, in the small x-limit
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* For a < 1 angularities and Tj_ia < R, the factorized differential distribution is
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Medium modified splitting functions give jet function
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No extra divergences induced by the medium. Soft IR divergence of the integral
regulated by the LPM effect.

Total jet function in AA collision ~ J!'(...) = JY*(...) + J™9(...)

RGE for J*°! remains the same as vacuum



* Medium modified splittings also modify the energy lost by a jet parton outside the jet cone.

. Ajet measured in a given prange can now have contributions from various higher p;initiated jets that
have lost a sufficient amount of energy.

. Estimate the energy loss by computing the average fraction of energy lost out of the jet cone
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* For AA collisions, we use the CTEQ nuclear PDFs for the initial state.

Initial-State
* This only incorporates the intrinsic modifications of the parton distribution

functions. 0’
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* The jet parton, may however, undergo an additional energy loss due to

the complex nuclear state even before the hard collision.
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* So far, we considered the medium to be a homogenous brick of a fixed length.

* The probability distribution of the nuclear matter within the overlap region
can be estimated by the well known initial state models.

* Additionally, the medium formed expands and eventually cools down. To
incorporate this expansion, we consider a longitudinal Bjroken expansion
of the form

£ 1/3
T(t) — T(to) (7)

* Furthermore, the extent of the medium that the jet traverses fluctuates on a jet-by-jet basis
depending on the location of hard scattering within the overlap region.

* We compute an average path length for a jet in a given centrality class by averaging over all locations
and angles.



Parameter

0—-10%

10 — 30 %

b (fm)

3.34

7.01

L (fm)

496 * 1.22

3.56 = 0.99
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248 128

308 = 84
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Normalised differential distributions in PbPb (central) and pp for a = 0, jet parameters 40 < p; < 60 and (@) R = 0.2, (b) R = 0.4.

The theoretical error bands correspond to variation in y from pto 2p;.
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* Jet angularities allow to study a class of substructure observables with sensitivity to collinear emissions

controlled by a continuous parameter, a.

* Jet-medium interactions modelled through off-shell Glauber gluons generated by color gauge fields of
the medium.

* For a < 1, all medium modifications consistently incorporated in the medium modified jet function
through the medium splittings.

* Narrowing of the jet distributions in the medium is observed as a cumulative effect of energy loss and
medium modified splittings.

* For a cleaner understanding of medium effects on the jet core, one needs to look at groomed

angularities — less sensitive to hadronization and jet selection effects



