Phenomenology with Massive Neutrinos in 2022

Concha Gonzalez-Garcia (ICREA U. Barcelona & YITP Stony Brook)

Nov 22, 2022, U. Vienna

& eachers. Dark maider

OUTLINE

The confirmed picture: 3ν Lepton Flavour Parameters

Some Q&A and some open avenues

Sources of ν 's

 $\frac{\text{ExtraGalactic}}{E_{\nu} \gtrsim 30 \text{ TeV}}$

 \mathbf{p}

 u_e

The Sun

 $\Phi_{
u}^{Earth} = 6 \times 10^{10} \nu/\mathrm{cm}^2 \mathrm{s}$ $E_{
u} \sim 0.1\text{--}20 \mathrm{MeV}$

 $\Phi_{\nu} = 340 \times 10^{6} \nu / day$

The Big Bang

 $\rho_{\nu} = 330 / \text{cm}^3$

 $p_{\nu} = 0.0004 \text{ eV}$

 $\frac{\text{Atmospheric }\nu's}{\nu_e,\nu_\mu,\overline{\nu}_e,\overline{\nu}_\mu}$ $\Phi_\nu \sim 1\nu/\text{cm}^2\text{s}$

Discovering the Nature of Nature

 $\frac{\text{Nuclear Reactors}}{E_{\nu} \sim \text{few MeV}}$ $\overline{\nu_e}$

 $\frac{\text{Earth's radioactivity}}{\Phi_{\nu} \sim 6 \times 10^6 \nu/\text{cm}^2 \text{s}}$

 $\frac{\text{Accelerators}}{E_{\nu} \simeq 0.3\text{--}30 \text{ GeV}}$

Neutrinos in the Standard Model

The SM is a gauge theory based on the symmetry group

$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

With three generation of fermions

$(1,2)_{-\frac{1}{2}}$	$(3,2)_{\frac{1}{6}}$	$(1, 1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\left(\begin{array}{c} \boldsymbol{\nu_e}\\ e\end{array}\right)_L$	$\left(\begin{array}{c} u^i \\ d^i \end{array}\right)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{L}$	$\left(\begin{array}{c}c^i\\s^i\end{array}\right)_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array}\right)_{L}$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L$	$ au_R$	t_R^i	b_R^i

There is no ν_R

Three and only three

Three and only three

Neutrinos in the Standard Model

The SM is a gauge theory based on the symmetry group

$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

With three generation of fermions

 ν strictly massless

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_e at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated

 \Rightarrow There is Physics Beyond SM

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated

 \Rightarrow There is Physics Beyond SM

• The *important* question:

What BSM?

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (T2K, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated

 \Rightarrow There is Physics Beyond SM

• The *important* question:

What BSM?

• Today the *starting* path:

Precise determination of the low energy parametrization

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose *L* conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu}\nu^{C} + h.c.$$

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu}\nu^{C} + h.c.$$

• The charged current interactions of leptons are not diagonal (similar to quarks)

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu}\nu^{C} + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

• In general for N = 3 + s massive neutrinos U_{LEP} is $3 \times N$ matrix

 $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

• U_{LEP} : 3 + 3s angles + 2s + 1 Dirac phases + s + 2 Majorana phases

 ν Mass Oscillations in Vacuum

hcha Gonzalez-Garcia 7

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$: $|\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$

• After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27\frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}}\frac{L/E}{\mathrm{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac

 ν Mass Oscillations in Vacuum

ha Gonzalez-Garcia 7-a

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle) : |\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$

• After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27\frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}}\frac{L/E}{\mathrm{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac

• When osc between $2-\nu$ dominates:

$$P_{\alpha\alpha} = 1 - P_{osc} \qquad \text{Disappear}$$
$$P_{osc} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E}\right) \text{Appear}$$

 \Rightarrow No info on sign of Δm^2 and θ octant

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

- To detect oscillations we can study the neutrino flavour
 - as function of the Distance to the source

As function of the neutrino Energy

Matter Effects

- If ν cross matter regions (Sun, Earth...) it interacts coherently
 - But Different flavours
 have different interactions :

 \Rightarrow Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$

$$-i\frac{\partial}{\partial x}\begin{pmatrix}\nu_e\\\nu_X\end{pmatrix} = \begin{bmatrix} \left[-\begin{pmatrix}V_e - V_X - \frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta\\\frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta\end{pmatrix} \end{bmatrix} \begin{pmatrix}\nu_e\\\nu_X\end{pmatrix}$$

 \Rightarrow *Modification of mixing angle and oscillation wavelength* (MSW)

Matter Effects

- If ν cross matter regions (Sun, Earth...) it interacts coherently
 - But Different flavours
 have different interactions :

 $\Rightarrow \text{ Effective potential in } \nu \text{ evolution} : V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$ $-i\frac{\partial}{\partial x} \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix} = \begin{bmatrix} \left[-\begin{pmatrix} V_e - V_X - \frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix} \right] \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix}$

 \Rightarrow *Modification of mixing angle and oscillation wavelength* (MSW)

• Mass difference and mixing in matter:

$$\Delta m_m^2 = \sqrt{\left(\Delta m^2 \cos 2\theta - 2E\Delta V\right)^2 + \left(\Delta m^2 \sin 2\theta\right)^2}$$
$$\sin(2\theta_m) = \frac{\Delta m^2 \sin(2\theta)}{\Delta m_{mat}^2}$$

 \Rightarrow For solar $\nu's$ in adiabatic regime

 $P_{ee} = \frac{1}{2} \left[1 + \cos(2\theta_m) \cos(2\theta) \right]$

Dependence on θ octant

 $\Rightarrow \text{ In LBL terrestrial experiments}$ Dependence on sign of Δm^2 and θ octant

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, **MINOS**, **NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_e at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

Vacuum oscillation L/E pattern with 2 frequencies

 3ν Flavour Parameters

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3*v* **Flavour Parameters**

Concha Gonzalez-Garcia 11-a

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\rm LEP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

3*v* **Flavour Parameters**

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i} & 0 & 0 \\ 0 & q^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

Data to be Described

Solar experiments

- Chlorine total rate, 1 data point.
- Gallex & GNO total rates, 2 points.
- SAGE total rate, 1 data point.
- SK1 E and zenith spect, 44 poins.
- SK2 E and D/N spect, 33 points.
- SK3 E and D/N spect, 42 points.
- SK4 2970-day E spectrum and D/N asym, 24 points.
- SNO combined analysis, 7 points.
- Borexino Ph-I 740.7-day low-E spect 33 points.
- Borexino Ph-I 246-day high-E spect ,6 points.
- Borexino Ph-II 408-day low-E spect, 42 points.

Reactor experiments

- KamLAND DS1,DS2&DS3 spectra with Daya-Bay fluxes 69 points
- DChooz FD/ND ratios with 1276-day (FD) and 587-day (ND) exposures , 26 points.
- Daya-Bay 1958-day EH2/EH1 & EH3/EH1 ratios,52 points. Missing new 3158 day spectra.
- Reno 2908-day FD/ND ratios 45 points.

Atmospheric experiments

- IceCube/DeepCore 3-year data, 64 points.
- SK I-IV 328 and 372 kton-years $(\chi^2 \text{ table provided by SK})$. Missing SK-V (not table avalable yet).

Accelerator experiments

- MINOS 10.71×10^{20} pot ν_{μ} -disapp data, 39 poins.
- MINOS 3.36 \times 10^{20} pot $\bar{\nu}_{\mu}$ -disapp data , 14 points.
- MINOS 10.6×10^{20} pot $\nu_e\text{-app}$ data , 5 points.
- MINOS $3.3\times 10^{20}~{\rm pot}~\bar{\nu}_e\text{-app}$ data , 5 points.
- T2K 19.7 \times 10^{20} pot ν_{μ} -disapp data, 35 points.
- T2K 19.7×10^{20} pot ν_e -app data, 23 points CCQE and 16 points CC1 π .
- T2K 16.3×10^{20} pot $\bar{\nu}_{\mu}$ -disapp, 35 points.
- T2K 16.3×10^{20} pot $\bar{\nu}_e$ -app, 23 points.
- + NOvA 13.6 \times 10^{20} pot ν_{μ} -disapp data , 76 points.
- NO ν A 13.6 × 10²⁰ pot ν_e -app data , 13 points.
- NO ν A 12.5 × 10²⁰ pot $\bar{\nu}_{\mu}$ -disapp, 76 points.
- NO ν A 12.5 × 10²⁰ pot $\bar{\nu}_e$ -app, 13 points.

Global 6-parameter fit http://www.nu-fit.org

Esteban, G-G, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792], G-G, Maltoni, Schwetz, 2111.03086

Global 6-parameter fit http://www.nu-fit.org

Esteban, G-G, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792], G-G, Maltoni, Schwetz, 2111.03086 • 4 well-known parameters:

Global 6-parameter fit http://www.nu-fit.org

Esteban, G-G, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792], G-G, Maltoni, Schwetz, 2111.03086 • 4 well-known parameters:

Global 6-parameter fit http://www.nu-fit.org

Esteban, G-G, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792], G-G, Maltoni, Schwetz, 2111.03086 • 4 well-known parameters:

CPV and Ordering in LBL: ν_e appearace

lez-Garcia 17

• Dominant information from ν_e apperance in LBL

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{21}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin\left(\frac{V_EL}{2}\right) \sin\left(\frac{B_{\mp}L}{2}\right) \cos\left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E} \quad B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$

 \Rightarrow Each T2K and NO ν A favour NO

CPV and Ordering in LBL: ν_e appearace

• Dominant information from ν_e apperance in LBL

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{21}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin \left(\frac{V_E L}{2}\right) \sin \left(\frac{B_{\mp}L}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E} \quad B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$

But tension in favoured values of δ_{CP} in NO

z-Garcia 17-a

 \Rightarrow <u>IO best fit in LBL combination</u>

 \Rightarrow Each T2K and NO ν A favour NO

Δm^2_{3l} in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2 \text{ NO}}{c_{12}^2 \Delta m_{21}^2 \text{ IO}} \qquad \text{Nunokawa,Parke,Zukanovich (2005)}$$

Δm_{3l}^2 in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

Δm_{3l}^2 in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

- T2K and NO ν A more compatible in IO \Rightarrow IO best fit in LBL combination
- LBL/Reactor complementarity in $\Delta m_{3\ell}^2 \Rightarrow$ NO best fit in LBL+Reactors

Δm_{3l}^2 in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

- T2K and NO ν A more compatible in IO \Rightarrow IO best fit in LBL combination
- LBL/Reactor complementarity in $\Delta m^2_{3\ell} \Rightarrow$ NO best fit in LBL+Reactors
- in NO: b.f $\delta_{\rm CP} = 195^{\circ} \Rightarrow \underline{\text{CPC}}$ allowed at 0.6 σ
- in IO: b.f $\delta_{\rm CP} \sim 270^\circ \Rightarrow \underline{\text{CPC}}$ disfavoured at 3 σ

Ordering and CPV including ATM

ATM results added to global fit using SK χ^2 tables

- NUFIT 5.0: included SK I-IV 328 kton-years table
- NUFIT 5.1: include SK I-IV 372.8 kton-years table

Ordering and CPV including ATM

ATM results added to global fit using SK χ^2 tables

- NUFIT 5.0: included SK I-IV 328 kton-years table
- NUFIT 5.1: include SK I-IV 372.8 kton-years table

Flavour Parameters: Mixing Matrix

• We have the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

	$(0.801 \rightarrow 0.844)$	$0.513 \rightarrow 0.579$	$0.143 \rightarrow 0.156$
$ U _{3\sigma} =$	0.233 ightarrow 0.507	$0.461 \rightarrow 0.694$	$0.639 \rightarrow 0.778$
	$0.261 \rightarrow 0.526$	$0.471 \rightarrow 0.701$	$0.611 \to 0.761$ /
Flavour Parameters: Mixing Matrix

• We have the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

	$(0.801 \rightarrow 0.844)$	$0.513 \rightarrow 0.579$	$0.143 \rightarrow 0.156$
$ U _{3\sigma} =$	0.233 ightarrow 0.507	$0.461 \rightarrow 0.694$	$0.639 \rightarrow 0.778$
	$0.261 \rightarrow 0.526$	$0.471 \rightarrow 0.701$	$0.611 \to 0.761$ /

• Good progress but still precision very far from:

 $|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$

Flavour Parameters: Mixing Matrix

• We have the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

	$(0.801 \rightarrow 0.844)$	$0.513 \rightarrow 0.579$	$0.143 \rightarrow 0.156$
$ U _{3\sigma} =$	0.233 ightarrow 0.507	$0.461 \rightarrow 0.694$	$0.639 \rightarrow 0.778$
	$0.261 \rightarrow 0.526$	0.471 ightarrow 0.701	$0.611 \to 0.761$ /

• Good progress but still precision very far from:

 $|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$

• Also very different flavour mixing of leptons vs quarks

3ν Mixing: Leptonic Unitarity Triangle

Unitarity triangle in quark sector

3\nu Mixing: Leptonic Unitarity Triangle

Unitarity triangle in quark sector

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm VL}{2}\right) +8 J_{\rm CP}^{\rm max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$

$$J_{\rm CP}^{\rm max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$$

– Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction

- Earth matter effects in large statistics ATM ν_{μ} disapp : HK,INO, PINGU,ORCA ... – Challenge: ATM flux contains both ν_{μ} and $\bar{\nu}_{\mu}$, ATM flux uncertainties
- Reactor experiment at $L \sim 60$ km (vacuum) able to observe the difference between oscillations with Δm_{31}^2 and Δm_{32}^2 : JUNO, RENO-50

$$P_{\nu_e,\nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

- Challenge: Energy resolution

JUNO: Sensitivity to Oscillation Parameters

	Central Value	PDG2020	$100\mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \ (\times 10^{-3} \ {\rm eV}^2)$	2.5283	± 0.034 (1.3%)	$\pm 0.021 \ (0.8\%)$	$\pm 0.0047 \ (0.2\%)$	$\pm 0.0029 \ (0.1\%)$
$\Delta m_{21}^2 \; (\times 10^{-5} \; \text{eV}^2)$	7.53	± 0.18 (2.4%)	± 0.074 (1.0%)	$\pm 0.024 \ (0.3\%)$	$\pm 0.017~(0.2\%)$
$\sin^2 \theta_{12}$	0.307	± 0.013 (4.2%)	$\pm 0.0058 \ (1.9\%)$	$\pm 0.0016 \ (0.5\%)$	$\pm 0.0010 \ (0.3\%)$
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007 (3.2\%)$	± 0.010 (47.9%)	± 0.0026 (12.1%)	± 0.0016 (7.3%)

2204.13249

Sensitivity to Neutrino Mass Ordering

Introduction Experiment Status Physics Conclusion

Maxim Gonchar (JINR)

JUNO

Impact of systematics:

🐎 ð p 🏠

* ② *

• Paper under preparation.

• Combination of reactor and atmospheric channels within JUNO is investigated.

DUNE & Hyper-Kamiokande: CPV and MO

Confirmed LE Picture and today's List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Updated 3ν fit
 - Robust determination of θ_{12} , θ_{13} , Δm_{21}^2 , $|\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

	best fit MO	$\Delta\chi^2({ m MO})$	best fit δ_{CP}	$\Delta\chi^2({\rm CPC})$	oct. θ_{23}	$\Delta \chi^2(\text{oct})$
LBL	ΙΟ	1.5	275°	2.0	2nd	2.2
+reactors	NO	2.7	195°	0.4	2nd	0.5
+ SK-Atm 328 kt-y (NuFIT 5.0)	NO	7.1	197°	0.5	2nd	2.5
or + SK-Atm 373 kt-y (NuFIT 5.1)	NO	7.0	230°	4.0	1st	3.2

 \Rightarrow interplay of LBL/reactor/ATM results

- \Rightarrow not statistically significant yet
- \Rightarrow definitive answer will likely require new experiments

Confirmed LE Picture and today's List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Updated 3ν fit
 - Robust determination of $\theta_{12}, \theta_{13}, \Delta m^2_{21}, |\Delta m^2_{3\ell}|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

	best fit MO	$\Delta\chi^2({ m MO})$	best fit δ_{CP}	$\Delta \chi^2$ (CPC)	oct. θ_{23}	$\Delta\chi^2({\rm oct})$
LBL	ΙΟ	1.5	275°	2.0	2nd	2.2
+reactors	NO	2.7	195°	0.4	2nd	0.5
+ SK-Atm 328 kt-y (NuFIT 5.0)	NO	7.1	197°	0.5	2nd	2.5
or + SK-Atm 373 kt-y (NuFIT 5.1)	NO	7.0	230°	4.0	1st	3.2

 \Rightarrow interplay of LBL/reactor/ATM results

- \Rightarrow not statistically significant yet
- \Rightarrow definitive answer will likely require new experiments
- Only three light states?

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim {
m eV}^2$

LSND & MiniBoone

LSND 2001:

Signal $\nu_{\mu} \rightarrow \nu_{e} (3.8 \sigma)$ MiniBooNE 2020:

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$ (639 ± 132.8 events)

Gallium Anomaly

Acero, Giunti, Laveder, 0711.4222 Giunti, Laveder, 1006.3244

Radioactive Sources (⁵¹Cr, ³⁷Ar) in calibration of Ga Solar Exp; $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Give a rate lower than expected

Explained as ν_e disappearance

Reactor Anomaly (2011)

onzalez-Garcia 31

Huber, 1106.0687 Mention *etal* ,1101.2755

New reactor flux calculation

 \Rightarrow Deficit in data at $L \lesssim 100 \text{ m}$

Explained as $\bar{\nu}_e$ disappearance

nzalez-Garcia 31-a

LSND & MiniBoone

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with

non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

nzalez-Garcia 32-a

LSND & MiniBoone

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e \& \nu_{\mu} \rightarrow \nu_e$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Gallium Anomaly

Acero etal, 0711.4222;Giunti, Laveder, 1006.3244

 ν_e + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Rate lower than expected

Explained as ν_e disappearance

Confirming results from BEST

Requires large mixings

Ruled out/tension by solar $\nu's$ Goldhagen etal 2109.14898 Berryman etal 2111.12530

LSND & MiniBoone

 $\bar{\nu}_{\mu} \to \bar{\nu}_{e} \& \nu_{\mu} \to \nu_{e}$ $\sin^{2} 2\theta_{\mu e} \sim \frac{1}{4} \sin^{2} 2\theta_{ee} \sin^{2} 2\theta_{\mu\mu}$

Strong tension with non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Gallium Anomaly

Acero etal, 0711.4222;Giunti, Laveder, 1006.3244

 ν_e + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Rate lower than expected

Explained as ν_e disappearance

Confirming results from BEST

Requires large mixings Ruled out/tension by solar $\nu's$ Goldhagen etal 2109.14898 Berryman etal 2111.12530

Reactor Anomaly

Huber, 1106.068,Mention *etal*,1101.2755 2011 reactor flux calculation \Rightarrow Deficit in $R = \frac{\text{data}}{\text{predict}}$ at $L \lesssim 100 \text{ m}$ Explained as $\bar{\nu}_e$ disappearance

2022 with updated inputs (^{235}U)

Berryman Huber, 2005.01756 Kipeikin etal, 2103.01486 Giunti etal, 2110.06820

(Fig from Giunti etal, 2110.06820)

Anomaly $\sim 1 \sigma$ with new fluxes

nzalez-Garcia 32-b

Searches for eV sterile neutrinos

This talk: (anti-) v_e disapearance only

$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{ee} = |U_{e4}|^2 (1 - |U_{e4}|^2)$$

S. Schönert | TUM | Sterile neutrinos

Spectral ratios at different baselines \Rightarrow Independent of flux normalizations.

But low statistical significance (Wilk's theorem fails) Berryman, etal 2111.12530 MC estimation of prob distribution \Rightarrow no significant indication of ν_s oscillations

- At least two neutrinos are massive \Rightarrow There is NP
- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - large lepton mixing very different from quark CKM
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments
- More than 3 ν light states?: Not coherently supported by SBL anomalies

- At least two neutrinos are massive \Rightarrow There is NP
- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - large lepton mixing very different from quark CKM
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments
- More than 3 ν light states?: Not coherently supported by SBL anomalies
- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: No signal yet

- At least two neutrinos are massive \Rightarrow There is NP
- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - large lepton mixing very different from quark CKM
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments
- More than 3 ν light states?: Not coherently supported by SBL anomalies
- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: No signal yet
- Other NP at play?

Non Standard ν **Interactions (NSI)**

At dimension-6 new 4-fermion interactions involving ν 's.

Some can afffect CC process in production and detection

 $(\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\ell_{\beta})(\bar{f}'\gamma^{\mu}Pf)$

and can be strongly constrained with charged lepton processes

Some affect only NC ν interactions

 $(\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta})(\bar{f}\gamma^{\mu}Pf)$

and are more poorely constrained

NC-Non Standard ν **Interactions in** ν **-OSC**

arcia 37

Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

NC-Non Standard ν **Interactions in** ν **-OSC**

cia 37-a

Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F N_e(r) \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

 $\varepsilon_{\alpha\beta}(r) \equiv \sum_{f=ued} \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^{fV} \Rightarrow 3\nu \text{ evolution depends on } 6 \text{ (vac)} + 8 \text{ per } f \text{ (mat)}$

NC-Non Standard ν **Interactions in** ν **-OSC**

Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F N_e(r) \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

 $\varepsilon_{\alpha\beta}(r) \equiv \sum_{f=ued} \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^{fV} \Rightarrow 3\nu \text{ evolution depends on } 6 \text{ (vac)} + 8 \text{ per } f \text{ (mat)}$

 \Rightarrow Parameters degeneracies

In particular $H \rightarrow -H^* \Rightarrow$ same Probabilities \Rightarrow invariance under simultaneously:

$$\begin{aligned} \theta_{12} \leftrightarrow \frac{\pi}{2} - \theta_{12} , & (\varepsilon_{ee} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{ee} - \varepsilon_{\mu\mu}) - 2 , \\ \Delta m_{31}^2 \rightarrow -\Delta m_{32}^2 , & (\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}) , \\ \delta \rightarrow \pi - \delta , & \varepsilon_{\alpha\beta} \rightarrow -\varepsilon_{\alpha\beta}^* & (\alpha \neq \beta) , \end{aligned}$$

 \Rightarrow Degeneracies in θ_{12} octant and mass ordering

NSI: Bounds/Degeneracies from/in Oscillation data

Esteban etal JHEP'18[1805.04530] Coloma, Esteban, MCGG, Maltoni, JHEP'19[1911.09109] (updated 2020)

	LMA	
$ \begin{array}{l} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{array} $	$\begin{matrix} [-0.072, +0.321] \\ [-0.001, +0.018] \end{matrix}$	
$\varepsilon^{u}_{e\mu}$ $\varepsilon^{u}_{e\tau}$ $\varepsilon^{u}_{u\tau}$	$\begin{bmatrix} -0.050, +0.020 \\ [-0.077, +0.098] \\ [-0.006, +0.007] \end{bmatrix}$	

- Standard Fit \equiv LMA \Rightarrow Bounds $\mathcal{O}(1\% 10\%)$
 - \Rightarrow Maximum effect at LBL experiments:

⇒ To be considered in effects/sensitivity studies at DUNE, HK... (tables available)

NSI: Bounds/Degeneracies from/in Oscillation data

Esteban etal JHEP'18[1805.04530] Coloma, Esteban, MCGG, Maltoni, JHEP'19[1911.09109] (updated 2020)

	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$
$\begin{array}{l} \varepsilon^{u}_{ee}-\varepsilon^{u}_{\mu\mu}\\ \varepsilon^{u}_{\tau\tau}-\varepsilon^{u}_{\mu\mu} \end{array}$	$\begin{array}{l} [-0.072, +0.321] \\ [-0.001, +0.018] \end{array}$	$\oplus [-1.042, -0.743]$ [-0.016, +0.018]
$\varepsilon^{u}_{e\mu}$ $\varepsilon^{u}_{e\tau}$ $\varepsilon^{u}_{\mu\tau}$	[-0.050, +0.020] [-0.077, +0.098] [-0.006, +0.007]	[-0.050, +0.059] [-0.111, +0.098] [-0.006, +0.007]

- Standard Fit \equiv LMA \Rightarrow Bounds $\mathcal{O}(1\% 10\%)$
 - \Rightarrow Maximum effect at LBL experiments:

- ⇒ To be considered in effects/sensitivity studies at DUNE, HK... (tables available)
- Degenerate solution ≡LMA-D Miranda,Tortola, Valle, hep-ph/0406280
 - $\Rightarrow \theta_{12} \leftrightarrow \frac{\pi}{2} \theta_{12} \quad \& \quad (\varepsilon_{ee} \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{ee} \varepsilon_{\mu\mu}) 2$
 - \Rightarrow Requires NSI $\sim G_F$ (light mediators?) Farzan 1505.06906, and Shoemaker 1512.09147

Concha Gonzalez-Garcia 40

Oscillation bounds on Z'/Dark Photons

Coloma, MCGG, Maltoni, JHEP'21 [2009.14220]

Interpreting

 $\frac{g'^2}{M_{Z'}^2} q'_f q'_\nu$ \Leftarrow

 $\epsilon^{J}_{\alpha\beta}$

Z' Models: ν Oscillations Bounds

Coloma, MCGG, Maltoni ArXiv:2009.14220

 $M_{Z'} \gtrsim \mathcal{O}(\text{MeV}) \Rightarrow \text{Contact Interaction in } H_{\text{mat}}$

 \Rightarrow Bounds from Oscillations stronger than scattering bounds on some models

Z' Models: Long Range Regime

For extremely light Z' the potential encountered by ν at \vec{x} depends on the integral of the source density within a radius $\sim 1/M_{Z'}$ around it

We can still formally write $H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 + \varepsilon_{ee}(\vec{x}) & 0 & 0 \\ 0 & \varepsilon_{\mu\mu}(\vec{x}) & 0 \\ 0 & 0 & \varepsilon_{\tau\tau}(\vec{x}) \end{pmatrix}$

$$\varepsilon_{\alpha\beta}(\vec{x}) \equiv \sum_{f} \frac{\hat{N}_{f}(\vec{x}, M_{Z'})}{N_{e}(r)} \varepsilon_{\alpha\beta}^{f} \qquad \hat{N}_{f}(\vec{x}, M_{Z'}) \equiv \frac{4\pi}{M_{Z'}^{2}} \int_{\substack{N_{f}(\vec{\rho}) \\ \text{de Holanda, MCGG, Masso, Zukanovich hep-ph/0609094}}} \delta_{M} \delta_$$

Z'/Dark-photon: Bounds from ν Oscillations

Coloma, MCGG, Maltoni, JHEP'21 [2009.14220]

Very light $(M' \leq \mathcal{O}(eV))$ mediator \Rightarrow Long Range Force to Contact Interaction in H_{mat}

 \Rightarrow Bounds from Oscillations stronger than 5th force and VEP experiments

Z' Models: Viable models for LMA-D

onzalez-Garcia 44

Survey 10000 set of models characterized by the six relevant fermion U(1) charges About 5% lead to a viable LMA-D solution. Two examples

Coloma, MCGG, Maltoni ArXiv:2009.14220

- At least two neutrinos are massive \Rightarrow There is NP
- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - large lepton mixing very different from quark CKM
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments
- More than 3 ν light states?: Not coherently supported by SBL anomalies
- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: No signal yet
- Other NP at play? Only subdominant allowed. But for NSI
 - No hint in present experiments \Rightarrow bounds on effects at future experiments
 - But degenerate solution Dark-LMA not excluded
 - Bounds on flavoured dark-photon/Z' models
- What about a UV complete model which answers?:
 - Why are neutrinos so light? \equiv The Origin of Neutrino Mass
 - Why are lepton mixing so different from quark's? \equiv The Flavour Puzzle

Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

 v^2

Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

 \Rightarrow First NP effect \Rightarrow dim=5 operator. Only one and violates Lepton Number

$$\mathcal{O}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right) \quad \Rightarrow \qquad (M_{\nu})_{ij} = Z_{ij}^{\nu}$$

Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators
- \Rightarrow First NP effect \Rightarrow dim=5 operator. Only one and violates Lepton Number

$$\mathcal{O}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right) \quad \Rightarrow \qquad (M_{\nu})_{ij} = Z_{ij}^{\nu} \frac{v^2}{\Lambda_{\rm NP}}$$

Implications:

- Neutrinos are Majorana
- It is natural that ν mass is the first evidence of NP
- Naturally $m_{
 u} \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{\mathrm{NP}} >> v$
Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim > 4) operators
- \Rightarrow First NP effect \Rightarrow dim=5 operator. Only one and violates Lepton Number

$$\mathcal{O}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right) \quad \Rightarrow \qquad (M_{\nu})_{ij} = Z_{ij}^{\nu} \frac{v^2}{\Lambda_{\rm NP}}$$

Implications:

- Neutrinos are Majorana
- It is natural that ν mass is the first evidence of NP
- Naturally $m_{\nu} \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{\rm NP} >> v$

 \mathcal{O}_5 is generated for example by tree-level exchange of singlet $(N_i \equiv (1, 1)_0)$ (Type-I) or triplet fermions $(N_i \equiv \Sigma_i \equiv (1, 3)_0)$ (Type-III) or a scalar triplet $\Delta \equiv (1, 3)_1$ (Type-II)

 \mathcal{O}_5 is generated for example by tree-level exchange of singlet $(N_i \equiv (1, 1)_0)$ (Type-I) or triplet fermions $(N_i \equiv \Sigma_i \equiv (1, 3)_0)$ (Type-III) or a scalar triplet $\Delta \equiv (1, 3)_1$ (Type-II)

- For fermionic see-saw $-\mathcal{L}_{\mathrm{NP}} = -i\overline{N_i} \mathcal{D} N_i + \frac{1}{2} M_{Nij} \overline{N_i^c} N_j + \lambda_{\alpha j}^{\nu} \overline{L_{\alpha}} \tilde{\phi} N_j [.\tau]$ $\Rightarrow \mathcal{O}_5 = \frac{(\lambda^{\nu T} \lambda^{\nu})_{\alpha\beta}}{\Lambda_{\mathrm{NP}}} \left(\overline{L_{\alpha}} \tilde{\phi}\right) \left(\tilde{\phi}^T L_{\beta}^C\right) \quad \text{with } \Lambda_{\mathrm{NP}} = M_N$
- For scalar see-saw $-\mathcal{L}_{\rm NP} = f_{\Delta\alpha\beta}\overline{L_{\alpha}}\Delta L_{\beta}^{C} + M_{\Delta}^{2} |\Delta|^{2} + \kappa \phi^{T} \Delta^{\dagger} \phi \dots$

$$\Rightarrow \mathcal{O}_5 = \frac{f_{\Delta_{\alpha\beta}}}{\Lambda_{NP}} \left(\overline{L_{\alpha}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{\beta}^C \right) \qquad \text{with} \quad \Lambda_{NP} = \frac{M_{\Delta}^2}{\kappa}$$

Very different physics, but same ν parameters: How to proceed?

Same \mathcal{O}_5 can be generated by very different High Energy physics Very different physics, but same ν parameters: How to proceed?

– Top-down: Assume some specific model and work out the relations

Modeling Lepton Flavour: 2006 to 2022

• Survey of 63 ν mass models in 2006 (Albright, M-C Chen,hep-ph/0608136)

- Determination of θ_{13} has given us important handle in flavour modeling
- Next frontier is the ordering

Same \mathcal{O}_5 can be generated by very different High Energy physics Very different physics, but same ν parameters: How to proceed?

– Top-down: Assume some specific model and work out the relations

– Search for additional information from charged LFV, collider signals ...

Conche Conzelez Garcia 51

Connection to CLFV & Collider Signatures?

• ν oscillation \Rightarrow Lepton Flavour is not conserved and generically new Λ_{NP} scale

If only $\mathcal{O}_5 \implies Br(\tau \to \mu \gamma) \sim 10^{-41}$ too small and $\Lambda_{\rm NP} \sim v^2/m_{\nu}$ too high

Conche Conzelez Carcia 51-a

Connection to CLFV & Collider Signatures?

• ν oscillation \Rightarrow Lepton Flavour is not conserved and generically new Λ_{NP} scale

If only $\mathcal{O}_5 \implies Br(\tau \to \mu \gamma) \sim 10^{-41}$ too small and $\Lambda_{\rm NP} \sim v^2/m_{\nu}$ too high

• But dim=6 operators are LN conserving but LFV (f.e. $O_6 \sim \bar{L}_{\alpha} \bar{L}_{\beta} L_{\gamma} L_{\rho}$).

So may be

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_{5\alpha\beta}}{\Lambda_{LN}} \left(\overline{L_{\alpha}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{\beta}^C \right) + \sum_i \frac{c_{6,i}}{\Lambda_{LF}^2} \mathcal{O}_{6,i}$$

Conche Conzelez Carcia 51-b

Connection to CLFV & Collider Signatures?

• ν oscillation \Rightarrow Lepton Flavour is not conserved and generically new Λ_{NP} scale

If only $\mathcal{O}_5 \implies Br(\tau \to \mu \gamma) \sim 10^{-41}$ too small and $\Lambda_{\rm NP} \sim v^2/m_{\nu}$ too high

• But dim=6 operators are LN conserving but LFV (f.e. $O_6 \sim \bar{L}_{\alpha} \bar{L}_{\beta} L_{\gamma} L_{\rho}$).

So may be

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_{5\alpha\beta}}{\Lambda_{LN}} \left(\overline{L_{\alpha}} \widetilde{\phi} \right) \left(\widetilde{\phi}^T L_{\beta}^C \right) + \sum_i \frac{c_{6,i}}{\Lambda_{LF}^2} \mathcal{O}_{6,i}$$

 In general to have observable LFV one needs to decouple : New Physics scale Λ_{LN} responsible for the small m_ν from New Physics scale Λ_{LF} (≪ Λ_{LN}) controlling of LFV and if heavy state mass M ~ Λ_{LF} ~ TeV ⇒ Collider signatures Furthermore if c_{6,i} ∝ c₅^{some power} ⇒ LFV and coll signals directly related to M_ν

Connection to CLFV & Collider Signatures?

• ν oscillation \Rightarrow Lepton Flavour is not conserved and generically new Λ_{NP} scale

If only $\mathcal{O}_5 \implies Br(\tau \to \mu \gamma) \sim 10^{-41}$ too small and $\Lambda_{\rm NP} \sim v^2/m_{\nu}$ too high

• But dim=6 operators are LN conserving but LFV (f.e. $O_6 \sim \bar{L}_{\alpha} \bar{L}_{\beta} L_{\gamma} L_{\rho}$).

So may be

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_{5\alpha\beta}}{\Lambda_{LN}} \left(\overline{L_{\alpha}} \widetilde{\phi} \right) \left(\widetilde{\phi}^T L_{\beta}^C \right) + \sum_i \frac{c_{6,i}}{\Lambda_{LF}^2} \mathcal{O}_{6,i}$$

• In general to have observable LFV one needs to decouple : New Physics scale Λ_{LN} responsible for the small m_{ν} from New Physics scale Λ_{LF} ($\ll \Lambda_{LN}$) controlling of LFV and if heavy state mass $M \sim \Lambda_{LF} \sim \text{TeV} \Rightarrow$ Collider signatures

Furthermore if $c_{6,i} \propto c_5^{\text{some power}} \Rightarrow \text{LFV}$ and coll signals directly related to M_{ν}

Minimal Lepton Flavour Violation

Cirigliano, Grinstein, Isidori, Wise(05); Davidson, Palorini (06); Gavela, Hambye, Hernandez, Hernandez (09) Alonso, Isidori, Merlo, Munoz, Nardi(11)

MLFV & Collider Signatures

cha Gonzalez-Garcia 52

• Minimal Flavour Violation Hypothesis: Chivukula, Georgi (87) Buras, Gambino, Gorbahn, Jager, Silvestrini,(01) d'Ambrosio, Giudice, Isidori, Strumia (02)

Yukawas are the only source of flavour violation in and beyond SM

Very predictive and successful to explain quark flavour data

For leptons more subtle since BSM fields are required to generate majorana M_{ν}

MLFV & Collider Signatures

a Gonzalez-Garcia 52-a

• Minimal Flavour Violation Hypothesis: Chivukula, Georgi (87) Buras, Gambino, Gorbahn, Jager, Silvestrini,(01) d'Ambrosio, Giudice, Isidori, Strumia (02)

Yukawas are the only source of flavour violation in and beyond SM

Very predictive and successful to explain quark flavour data For leptons more subtle since BSM fields are required to generate majorana M_{ν}

• Scalar (Type-II) see-saw is MLFV

 $c_{5,\alpha\beta} = f_{\Delta\alpha\beta} \frac{\kappa}{M_{\Delta}} \qquad c_{6,\alpha\beta\gamma\rho} = f_{\Delta\alpha\beta}^{\dagger} f_{\Delta\gamma\rho}$

• If $M_{\Delta} \lesssim {
m TeV}$

 \Rightarrow Production of triplet scalars: $H^{\pm\pm} H^{\pm}$, A_0 , H_0

Striking Signatures

 $pp \rightarrow H^{++}H^{--}$ $pp \rightarrow H^{++}H^{-}$

 $\Rightarrow \quad H^{\pm\pm}l_i^{\pm}l_j^{\pm}, H^{\pm} \rightarrow l_i^{\pm}\nu_j$
predicted by neutrino parameters

MLFV & Collider Signatures

- MLFV Fermionic (I or III) Inverse see-saw Gavela, Hambye, Hernandez, Hernandez (09)
 - \rightarrow one massless ν & one CP phase α
 - \rightarrow Yukawas $\lambda_{\alpha N}$ determined by ν parameters
- At LHC:
 - Type-I unobservable but Type-III observable $pp \to F(\to \ell_{\alpha} X)F'(\to \ell_{\beta} X')$
 - Rates predictable in terms of ν parameters
 - Unambiguous constraints from existing data
 - Best with final state flavour and charge info

Rosa-Agostinho, Eboli, MCGG 1708.08456

Confirmed Low Energy Picture and MY List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - large lepton mixing very different from quark CKM
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments
- More than 3 ν light states?: Not coherently supported by SBL anomalies
- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: No signal yet
- Other NP at play? Only subdominant allowed. But for NSI
 - No hint in present experiments \Rightarrow bounds on effects at future experiments
 - But degenerate solution Dark-LMA not excluded
 - Bounds on flavoured dark-photon/Z' models
- What about a UV complete model which answers?:
 - Why are neutrinos so light? \equiv The Origin of Neutrino Mass
 - Why are lepton mixing so different from quark's? \equiv The Flavour Puzzle

Answer will require some positive signal in colliders, CLFV ... experiments

THANK YOU

BACK-UP SLIDES

Summary: Global 3 ν **Flavour Parameters**

Evolution of global 3 flavour fit

Gonzalez-Garcia, Maltoni, TS [arXiv:2111.03086]

	2012	2014	2016	2018	2021		
	NuFIT 1.0	NuFIT 2.0	NuFIT 3.0	NuFIT 4.0	NuFIT 5.1		
θ_{12}	15%	14%	14%	14%	14%	1.07	
θ_{13}	30%	15%	11%	8.9%	9.0%	3.3	
θ_{23}	43%	32%	32%	27%	27%	1.6	
Δm_{21}^2	14%	14%	14%	16%	16%	0.88	
$\left \Delta m_{3\ell}^2\right $	17%	11%	9%	7.8%	6.7% [6.5%]	2.5	
$\delta_{ m CP}$	100%	100%	100%	100% [92%]	100% [83%]	1 [1.2]	
$\Delta \chi^2_{ m IO-NO}$	± 0.5	-0.97	+0.83	+4.7 [+9.3]	+2.6 [+7.0]	1	
				w/o [w] SK atm data			

relat. precision at $3\sigma: \ {2(x^+-x^-)\over (x^++x^-)}$

improvement factor from 2012 to 2021

• Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2 • Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2

• Tension arising from:

Smaller-than-expected MSW low-E turn-up in SK/SNO spectrum at global b.f.

"too large" of Day/Night at SK $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$

• Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2

• Tension arising from:

Smaller-than-expected MSW low-E turn-up in SK/SNO spectrum at global b.f.

"too large" of Day/Night at SK $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$

• AFTER NU2020: With SK4 2970 days data Slightly more pronounced low-E turn-up

Smaller of Day/Night at $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$ $A_{D/N,SK4-2970} = [-2.1 \pm 1.1]\%$

• In NuFIT 5.1

 \Rightarrow Agreement of Δm^2_{21} between solar and KamLAND at 1 σ

Compatibility T2K/NO ν **A**

Concha Gonzalez-Garcia 60

• 1 and 2 σ (2dof) allowed regions (for $s_{13}^2 = 0.0224$, marg over $|\Delta m_{3\ell}^2|$)

 \Rightarrow Better agreement in IO but NO 1 σ regions "touch"

Compatibility T2K/NO ν **A**

oncha Gonzalez-Garcia 60-a

• 1 and 2 σ (2dof) allowed regions (for $s_{13}^2 = 0.0224$, marg over $|\Delta m_{3\ell}^2|$)

- \Rightarrow Better agreement in IO but NO 1 σ regions "touch"
- Parameter goodness-of-fit (PG) test:

	normal ordering			inverted ordering		
	$\chi^2_{ m PG}/n$	<i>p</i> -value	$\#\sigma$	$\chi^2_{\rm PG}/n$	<i>p</i> -value	$\#\sigma$
T2K vs NOvA (θ_{13} free)	6.7/4	0.15	1.4σ	3.6/4	0.46	0.7σ
T2K vs NOvA (θ_{13} fix)	6.5/3	0.088	1.7σ	2.8/3	0.42	0.8σ

No significant incompatibility

Leptonic CP Violation

• Leptonic $\mathcal{Q}P \Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}} \neq P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$:

 $P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \propto J \quad \text{with} \quad J = \text{Im}(U_{\alpha 1}U_{\alpha_{2}}^{*}U_{\beta 2}U_{\beta_{1}}^{*}) = J_{\text{LEP,CP}}^{\max} \sin \delta_{\text{CP}}$

 $J_{\text{LEP,CP}}^{\text{max}} = \frac{1}{8}c_{13}\,\sin^2 2\theta_{13}\sin^2 2\theta_{23}\sin^2 2\theta_{12}$

Leptonic CP Violation

• Leptonic $\mathcal{Q}P \Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}} \neq P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$:

 $P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \propto J \quad \text{with} \quad J = \text{Im}(U_{\alpha 1}U_{\alpha_{2}}^{*}U_{\beta 2}U_{\beta_{1}}^{*}) = J_{\text{LEP,CP}}^{\max} \sin \delta_{\text{CP}}$

 $J_{\text{LEP,CP}}^{\text{max}} = \frac{1}{8}c_{13}\,\sin^2 2\theta_{13}\sin^2 2\theta_{23}\sin^2 2\theta_{12}$

• Maximum Allowed Leptonic CPV:

 $J_{\rm LEP,CP}^{\rm max} = (3.29 \pm 0.07) \times 10^{-2}$ to compare with

$$J_{\rm CKM,CP} = (3.04 \pm 0.21) \times 10^{-5}$$

- ⇒ Leptonic CPV may be largest CPV in New Minimal SM
 - if $\sin \delta_{\rm CP}$ not too small

Confirmed Low Energy Picture and MY List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - large lepton mixing very different from quark CKM
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments
- More than 3 ν light states?: Not coherently supported by SBL anomalies
- What about mass scale and Dirac vs Majorana?

Neutrino Mass Scale: β **Decay**

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

Purely kinematics \Rightarrow Only model independent probe ν -mass scale

KATRIN: $m_{\nu_e} \le 0.8 \text{ eV}$ (at 90 % CL)

Majorana or Dirac: $0\nu\beta\beta$ **Decay**

If m_{ν} only source of ΔL

$$\left(T^{0\nu}_{1/2}\right)^{-1} = G^{0\nu} \, M^2_{\rm nucl} \, m^2_{ee}$$

$$m_{ee} = \left| \sum U_{ej}^2 m_j \right|$$

At present only bounds

Isotope	Experiment	year	T _{1/2} limit (yr)	m _{pp} (meV)
⁷⁶ Ge	GERDA	2020	$1.8 imes 10^{26}$	79 - 180
⁷⁶ Ge	MAJORANA DEMONSTRATOR	2019	$2.7 imes 10^{25}$	200 - 433
¹³⁶ Xe	KamLAND-Zen	2022	$2.3 imes 10^{26}$	36-156
¹³⁶ Xe	EXO-200	2019	$3.5 imes 10^{25}$	93-286
¹³⁰ Te	CUORE	2022	2.2×10^{25}	90 - 305

Light massive ν **in Cosmology**

Relic $\nu's$: Effects in several cosmological observations at several epochs Mainly via two effects: $\rho_r = \left[1 + \frac{7}{8} \times \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right] \rho_{\gamma}$ and $\sum_i m_{\nu_i}$

BUT: Observables also depend on all other cosmo parameters (and assumptions)

Light massive ν **in Cosmology**

Relic $\nu's$: Effects in several cosmological observations at several epochs Mainly via two effects: $\rho_r = \left[1 + \frac{7}{8} \times \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right] \rho_{\gamma}$ and $\sum_i m_{\nu_i}$

BUT: Observables also depend on all other cosmo parameters (and assumptions)

Probes of Mass Scale in 3\nu-mixing

onzalez-Garcia 66

Single β decay : Pure kinematics, Dirac or Majorana ν 's, only model independent

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = \begin{cases} \text{NO}: m_\ell^2 + \Delta m_{21}^2 c_{13}^2 s_{12}^2 + \Delta m_{31}^2 s_{13}^2 \\ \text{IO}: m_\ell^2 + \Delta m_{21}^2 c_{13}^2 s_{12}^2 - \Delta m_{31}^2 c_{13}^2 \end{cases}$$

Present bound: $m_{\nu_e} \leq 0.8 \text{ eV}$ (90% CL KATRIN 2022) ^TKatrin (20XX) Sensitivity to $m_{\nu_e} \sim 0.2 \text{ eV}$

COSMO for Dirac or Majorana m_{ν} affect growth of structures

$$\sum m_i = \begin{cases} \text{NO}: \sqrt{m_\ell^2} + \sqrt{\Delta m_{21}^2 + m_\ell^2} + \sqrt{\Delta m_{31}^2 + m_\ell^2} \\ \text{IO} \sqrt{m_\ell^2} + \sqrt{-\Delta m_{31}^2 - \Delta m_{21}^2 - m_\ell^2} + \sqrt{-\Delta m_{31}^2 - m_\ell^2} \end{cases}$$

67

Global oscillation analysis \Rightarrow Correlations m_{ν_e} , m_{ee} and $\sum m_{\nu}$ (Fogli *et al* (04))

-a

Global oscillation analysis \Rightarrow Correlations m_{ν_e} , m_{ee} and $\sum m_{\nu}$ (Fogli *et al* (04))

|-b

Global oscillation analysis \Rightarrow Correlations m_{ν_e} , m_{ee} and $\sum m_{\nu}$ (Fogli *et al* (04))

Global oscillation analysis \Rightarrow Correlations m_{ν_e} , m_{ee} and $\sum m_{\nu}$ (Fogli *et al* (04))

Lower bound on $\sum m_i$ depends on ordering Precision determination/bound of $\sum m_i$ can give information on ordering ? Hannestad, Schwetz 1606.04691, Simpson etal 1703.03425, Capozzi etal 1703.04471 ... Cosmo data will only add to N/I likelihood when accuracy on $\sum m_{\nu}$ better than 0.02 eV (to see a 2σ N/I difference between 0.06 and 0.1) Hannestad, Schwetz 1606.04691

68

Alternative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$
Alternative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$
- ν masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01 Non universal coupling of neutrinos $\gamma_1 \neq \gamma_2$ to gravitational potential ϕ

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97 Non universal asymptotic velocity of neutrinos $c_1 \neq c_2 \Rightarrow E_i = \frac{m_i^2}{2p} + c_i p$

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos $k_1 \neq k_2$ to torsion strength Q

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99 due to CPT violating terms: $\bar{\nu}_L^{\alpha} b_{\mu}^{\alpha\beta} \gamma_{\mu} \nu_L^{\beta} \Rightarrow E_i = \frac{m_i^2}{2p} \pm b_i$ $\lambda = \pm \frac{2\pi}{\Delta b}$

$$\lambda = rac{\pi}{E|\phi|\delta\gamma}$$

$$\lambda = \frac{2\pi}{E\Delta c}$$

$$\boldsymbol{\lambda} = \frac{2\pi}{Q\Delta k}$$

Alternative Mechanisms vs ATM ν 's

Severly constrained (MCG-G, M. Maltoni PRD 04,07)

COHERENT EXPERIMENT

Science 2017 [ArXiv:1708.01294]

- observation of coherent neutrino-nucleus scattering at 6.7σ at Csl[Na] detector
- neutrinos from stopped pion source at Oak Ridge NL
- I42 events observed, in agreement with Standard Model

NSI: Combination with COHERENT data

Coloma, MCGG, Maltoni, Schwetz ArXiv:1708.02899

- COHERENT has detected for first time Coherent νN scattering 1708.01294: 142(1± 0.28(sys)) observed events over a steady bck of 405 136(SM) + 6(1± 0.25(sys) beam-on bck) expected
- In presence of NSI: $N_{\rm NSI}(\varepsilon) = \gamma \left[f_{\nu_e} Q_{we}^2(\varepsilon) + (f_{\nu_{\mu}} + f_{\bar{\nu}_{\mu}}) Q_{w\mu}^2(\varepsilon) \right]$

 $Q_{w\alpha}^2 \propto \left[Z(g_p^V + 2\varepsilon_{\alpha\alpha}^{u,V} + \varepsilon_{\alpha\alpha}^{d,V}) + N(g_n^V + \varepsilon_{\alpha\alpha}^{u,V} + 2\varepsilon_{\alpha\alpha}^{d,V}) \right]^2 + \sum_{\beta \neq \alpha} \left[Z(2\varepsilon_{\alpha\beta}^{u,V} + \varepsilon_{\alpha\beta}^{d,V}) + N(\varepsilon_{\alpha\beta}^{u,V} + 2\varepsilon_{\alpha\beta}^{d,V}) \right]^2$

NSI: Combination with COHERENT data

Coloma, MCGG, Maltoni, Schwetz ArXiv:1708.02899

- COHERENT has detected for first time Coherent νN scattering 1708.01294: 142(1± 0.28(sys)) observed events over a steady bck of 405 136(SM) + 6(1± 0.25(sys) beam-on bck) expected
- In presence of NSI: $N_{\rm NSI}(\varepsilon) = \gamma \left[f_{\nu_e} Q_{we}^2(\varepsilon) + (f_{\nu_{\mu}} + f_{\bar{\nu}_{\mu}}) Q_{w\mu}^2(\varepsilon) \right]$

 $Q_{w\alpha}^2 \propto \left[Z(g_p^V + 2\varepsilon_{\alpha\alpha}^{u,V} + \varepsilon_{\alpha\alpha}^{d,V}) + N(g_n^V + \varepsilon_{\alpha\alpha}^{u,V} + 2\varepsilon_{\alpha\alpha}^{d,V}) \right]^2 + \sum_{\beta \neq \alpha} \left[Z(2\varepsilon_{\alpha\beta}^{u,V} + \varepsilon_{\alpha\beta}^{d,V}) + N(\varepsilon_{\alpha\beta}^{u,V} + 2\varepsilon_{\alpha\beta}^{d,V}) \right]^2$

• Impact on LMA-D: Allowed COHERENT region vs LMA-D required range

cia 72-a

NSI: Combination with COHERENT data

Coloma, MCGG, Maltoni, Schwetz ArXiv:1708.02899

- COHERENT has detected for first time Coherent νN scattering 1708.01294: 142(1± 0.28(sys)) observed events over a steady bck of 405 136(SM) + 6(1± 0.25(sys) beam-on bck) expected
- In presence of NSI: $N_{\rm NSI}(\varepsilon) = \gamma \left[f_{\nu_e} Q_{we}^2(\varepsilon) + (f_{\nu_{\mu}} + f_{\bar{\nu}_{\mu}}) Q_{w\mu}^2(\varepsilon) \right]$

 $Q_{w\alpha}^2 \propto \left[Z(g_p^V + 2\varepsilon_{\alpha\alpha}^{u,V} + \varepsilon_{\alpha\alpha}^{d,V}) + N(g_n^V + \varepsilon_{\alpha\alpha}^{u,V} + 2\varepsilon_{\alpha\alpha}^{d,V}) \right]^2 + \sum_{\beta \neq \alpha} \left[Z(2\varepsilon_{\alpha\beta}^{u,V} + \varepsilon_{\alpha\beta}^{d,V}) + N(\varepsilon_{\alpha\beta}^{u,V} + 2\varepsilon_{\alpha\beta}^{d,V}) \right]^2$

• OSCILLATION + COHERENT \Rightarrow LMA-D excluded at more than 3.1 σ

	f = u	f = d
$\epsilon_{ee}^{f,V}$	[0.028, 0.60]	[0.030, 0.55]
$\epsilon^{f,V}_{\mu\mu}$	[-0.088, 0.37]	$\left[-0.075, 0.33 ight]$
$\epsilon^{f,V}_{\tau\tau}$	[-0.090, 0.38]	$\left[-0.075, 0.33 ight]$
$\epsilon^{f,V}_{e\mu}$	[-0.073, 0.044]	[-0.07, 0.04]
$\epsilon_{e\tau}^{f,V}$	[-0.15, 0.13]	[-0.13, 0.12]
$\epsilon^{f,V}_{\mu au}$	[-0.01, 0.009]	[-0.009, 0.008]

All NSI's constrained

arcia 73