C-parameter hadronisation in the symmetric 3-jet limit and the strong coupling

Pier Monni (CERN) In collaboration with G. Luisoni, G. Salam (2012.00622)

University of Vienna, 25 June 2021

Beyond perturbation theory

• Outstanding precision reached in measurements challenges perturbative QFT computations at colliders - NP corrections are the bottleneck in several observables

Strong coupling constant: status

 Least precisely known SM coupling, reduction of its uncertainty crucial for HL-LHC and FCC

 E.g. impact of current World Average unc. on Higgs prodⁿ in gg fusion

		ggF cross s	ection at N ³ LO (
\sqrt{s}	σ	δ (theory)	$\delta(PI$
13 TeV	48.61 pb	$+2.08 \text{pb} \left(+4.27\%\right)$ $-3.15 \text{pb} \left(-6.49\%\right)$	$) \pm 0.89 \text{pb} ($
14 TeV	54.72 pb	+2.35 pb $(+4.28%)-3.54 pb$ $(-6.46%)$	$) \pm 1.00 \text{pb} ($
27 TeV	146.65 pb	+6.65pb $\left(\begin{array}{c} +4.53\% \\ -9.44pb \end{array} \right)$	$) \pm 2.81 \text{pb} ($

1		
		_
		_
		_
		-
		_
		_
		-
		-
		_
		_
		-
		_
		_
		_
		_
		_
		-
		-
		-
		100

Strong coupling constant: status

- World Average \implies spread between determinations
- E.g. significant tension between:
 - e+e- fits from 2j rate & T/C-parameter
 - (lattice) vs. e+e- fits T/C-parameter

Fit from C parameter w/ N³LL+NNLO perturbation theory (+mass effects and analytic NP corrections) [Hoang, Kolodrubetz, Mateu, Stewart '15]

Flavour Lattice Averaging Group 2019 [Aoki et al. '19]

Strong coupling constant: status

- World Average \Rightarrow spread between determinations
- Optimistic prospects from lattice QCD to reach high precision in the coming decade see e.g. [Dalla Brida, Ramos '19]
- At future colliders, high precision extractions possible from EWPO, e.g. ratio of $\sigma_{e+e-\rightarrow had}/\sigma_{e+e-\rightarrow \mu+\mu-}$

However, pinning down the above tensions crucial for: **Control of systematics in combination of fits;** Understand reliability of hadronisation models; ...

Hadronisation: MC models

MC models: control over event kinematics

Drawback: tuned with MC generator with low PT accuracy: "NP Corrections" might be under/over estimated

$$\mathcal{M}_{ij}(d\sigma_{\mathrm{MC}}^{\mathrm{parton}}(\mathcal{O}) \to d\sigma_{\mathrm{MC}}^{\mathrm{hadron}}(\mathcal{O})$$

E.g. migration matrices w/ unitarity constrⁿ for jet rates

 $R_2^{(p)} + R_3^{(p)} + R_{>4}^{(p)} = 1$ $R_{>4}^{(h)} = \sin^2(\xi_1 + \delta\xi_1) \sin^2(\xi_2 + \delta\xi_2)$

[Verbytskyi, Banfi, Kardos, PM, Kluth, Somogyi, Szor, Trocsanyi, Tulipant, Zanderighi '19]

 $R_2 @ N^3LO + NNLL:$ $R_2^{(h)} = \cos^2(\xi_1 + \delta\xi_1), \quad R_3^{(h)} = \sin^2(\xi_1 + \delta\xi_1)\cos^2(\xi_2 + \delta\xi_2) \quad \blacksquare \quad \alpha_s(M_Z) = 0.11881 \pm 0.00131$

• Analytic models: in principle usable with state of the art perturbative calculations

Drawback: full dynamics complex; expand in powers of 1/Q and extract the leading term [often only near logarithmic singularities]

[Dokshitzer, Marchesini, Webber '95] $\tilde{\alpha}_s^{\rm NP}(k_t^2) = \tilde{\alpha}_s(k_t^2) - \tilde{\alpha}_s^{\rm PT}(k_t^2)$ $\tilde{\alpha}_s^{\rm PT}(\mu^2) = \alpha_s \left(1 + \frac{\alpha_s}{2\pi} K^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 K^{(2)} + \mathcal{O}(\alpha_s^3) \right)$ **Dispersive representation of QCD coupling** Perturbative counterpart [i.e. soft physical coupling scheme]

E.g. dispersive model: correction due to radiation of a <u>gluer</u> with (effective) coupling $\tilde{\alpha}_s(\mu^2) \equiv \tilde{\alpha}_s(0) + \int_0^\infty \mathrm{d}m^2 \frac{\mu^2}{m^2 + \mu^2} \frac{\mathrm{d}\alpha_{\mathrm{eff}}(m^2)}{\mathrm{d}m^2}$ [i.e. prodⁿ of a system with gluon quantum numbers] [Dokshitzer, Marchesini, Webber '95]

Vast literature: dispersive model, shape function, dressed gluon exponentiation, large-n_F,...

[Catani, Marchesini, Webber '91] K⁽²⁾ in [Banfi, El-Menoufi, PM '18; Catani, De Florian, Grazzini '19]

• E.g. dispersive model: O(1/Q) => shift in the average value of the observable

<u>C parameter in the 2-jet limit</u>

Shift in 2-jet limit naturally emerges from structure of log resummation

$\Sigma^{\text{hadr.}}(C) = \Sigma^{\text{pert.}}(C - \langle \delta C \rangle(C))$

Radiative correction universal for additive observable [Milan factor]

[Dokshitzer, Lucenti, Marchesini, Salam '97-'98]

• E.g. dispersive model: O(1/Q) => shift in the average value of the observable

<u>C parameter in the 2-jet limit</u>

First moment of physical coupling **Second order corr**^{ns} (Milan factor) $\langle \delta C \rangle \simeq \zeta(C) \mathcal{M} \frac{\mu_I}{Q} \frac{4 C_F}{\pi^2} \left[\alpha_0(\mu_I^2) - \alpha_s(\mu_I^2) \right]$ $-\alpha_s^3(\mu_R^2)\frac{\beta_0^2}{\pi^2} \left(4\ln^2\frac{\mu_R}{\mu_I} + 4\left(\ln\frac{\mu_R}{\mu_I}\right)\right)$ for derivation see e.g. [Davison, Webber '08; Gehrmann, Luisoni, PM '12] (Thrust case) **Obs. dependent coefficient** $\Delta C(k) = \frac{k_t}{Q} \frac{3}{\cosh(\eta)} + \mathcal{O}\left(\frac{k_t^2}{Q^2}\right) \implies \zeta(0) = \int_{-\infty}^{\infty} \mathrm{d}\eta \, \frac{3}{\cosh(\eta)}$ $J - \infty$

$$\left[\frac{\mu_R}{\mu_R} - \alpha_s^2(\mu_R^2) \frac{\beta_0}{\pi} \left(2 \ln \frac{\mu_R}{\mu_I} + \frac{K^{(1)}}{2\beta_0} + 2 \right) \\ \frac{\kappa}{2} + 1 \right) \times \left(2 + \frac{\beta_1}{2\beta_0^2} + \frac{K^{(1)}}{2\beta_0} \right) + \frac{K^{(2)}}{4\beta_0^2} \right)$$

$$\frac{1}{\eta} = 3\pi$$

$$\alpha_0(\mu_I^2) \equiv \frac{1}{\mu_I} \int_0^{\mu_I} \mathrm{d}\mu\, \dot{d}\mu\, \dot{$$

• E.g. dispersive model: O(1/Q) => shift in the average value of the observable

<u>C parameter in the 2-jet limit</u>

 $\alpha_0(\mu_I^2) \equiv \frac{1}{\mu_I} \int_0^{\mu_I} \mathrm{d}\mu \, \tilde{\alpha}_s(\mu^2)_{_{10}}$

Kinematic dependence across the spectrum

- Shift extrapolated from the 2-jet limit, scaling across the spectrum neglected!
- 2-jet limit is special in that dependence of δC on hard partons recoil is quadratic, i.e. linear NP shift is independent of kinematic recoil map

• In general, away from this limit, δC depends linearly on recoil scheme

Possible to gain any insight on the scaling across the spectrum ?

Sudakov shoulder & recoil

$$C = \frac{3}{4} - \frac{81}{16} \left(\epsilon_q^2 + \epsilon_q \epsilon_{\bar{q}} + \epsilon_{\bar{q}}^2\right) + \mathcal{O}(\epsilon^3)$$

Quadratic dependence on the energies of the hard partons at the shoulder [linear corrⁿ insensitive to recoil]

Insensitivity to recoil map allows for the computation of the NP shift:

$$\Delta C(k) = \frac{3\sqrt{3}}{2} \frac{\sin^2(\phi)}{2\cosh(\eta) - \cos(\phi)} \frac{k_t}{Q} + \mathcal{O}\left(\frac{k_t^2}{Q^2}\right) \Rightarrow \zeta(3/4) = \frac{3\sqrt{3}}{4} \frac{C_A + 2C_F}{C_F} \left(4E(1/4) - 3K(1/4)\right)_{\text{[Luisoni, PM, III]}}$$

$$\zeta(0)/\zeta(3/4) \simeq 2.1$$
Non-inclusive corrections (i.e. Milan factor) as in 2-jet limit

Salam '20]

Impact on strong coupling fit

Toy model: Assume different power scaling templates in 0 < C < 3/4. Assess impact on fit from experimental data from ALEPH & JADE data* [backup]

*Use minimal overlap model for EXP systematics Moderate impact of systematic correlation model [backup]

Profiled scaling of linear NP shift

 $\zeta(C)$

12

10

8

Impact on strong coupling fit

Spread of values at the 3–4% level with a similar fit quality [scheme (a,2) shows a lower X² but disfavoured from fixed order checks (next slide)]

Fit based on NNLL+NNLO perturbation theory. Theory systematic uncertainty includes : [TH uncertainty=scales (μ_R, μ_{RES}) ⊕ matching ⊕ Milan factor]

Fit ALEPH+JADE. uncertainties: EXP+TH_TH

	Model	$lpha_s(M_Z^2)$	$lpha_0(\mu_I^2)$
	ζ_0	$0.1121 \pm 0.0006^{+0.0023}_{-0.0014}$	$0.53 \pm 0.01^{+0.07}_{-0.04}$
2	$\zeta_{a,1} \equiv \zeta_{b,1}$	$0.1142 \pm 0.0005 ^{+0.0026}_{-0.0015}$	$0.52\pm0.01^{+0.06}_{-0.04}$
	$\zeta_{a,2}$	$0.1121 \pm 0.0006^{+0.0024}_{-0.0015}$	$0.52\pm0.01^{+0.07}_{-0.04}$
	$\zeta_{a,3}$	$0.1099 \pm 0.0007^{+0.0022}_{-0.0014}$	$0.54 \pm 0.01^{+0.07}_{-0.05}$
	$\zeta_{b,2}$	$0.1163 \pm 0.0005^{+0.0028}_{-0.0017}$	$0.51 \pm 0.01^{+0.06}_{-0.04}$
	$\zeta_{b,3}$	$0.1167 \pm 0.0004^{+0.0028}_{-0.0018}$	$0.53 \pm 0.01^{+0.06}_{-0.04}$
_	ζ_c	$0.1156 \pm 0.0005^{+0.0027}_{-0.0016}$	$0.48 \pm 0.01^{+0.05}_{-0.03}$

Fixed order study of scaling (first order)

Examine different recoil maps away from singular points

$$\zeta(C) = \lim_{\epsilon \to 0} \frac{\pi Q}{2\alpha_s C_F} \int [dk]$$

$$\zeta(C) = \frac{1}{N} \lim_{\epsilon \to 0} \frac{\pi Q}{2\alpha_s C_F} \int d\Phi_{q\bar{q}g} \left[dk \right] M_{q\bar{q}g}^2 (\{p_{q}, p_{q}, p_{q$$

$M^{2}(k) \Delta C(\{p'_{i}\}, \{p_{i}\}; k) \,\delta(k_{t} - \epsilon)$ $\{b_i\}$) $M^2(k)\Delta C(\{p'_i\},\{p_i\};k)\delta(C-C(\{p_i\})) \delta(k_t-\epsilon)$ **Explore different recoil schemes**

- Catani–Seymour (CS) scheme: fully local [NB: we partition at equal angles in the event frame!] [Catani, Seymour '96]
- PanLocal scheme: fully local
- PanGlobal scheme: longitudinal d.o.f. local \oplus transverse [Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez '20] global
- Forshaw-Holguin-Plaetzer (FHP): <u>only one</u> longitudinal [Forshaw, Holguin, Plaetzer '20] d.o.f. local \oplus rest global

Fixed order study of scaling (first order)

 $\zeta(C)$

12

10

8

6

Fixed (first) order scaling insensitive to assignment of transverse recoil; dependence on the longitudinal d.o.f. of the map. Spread associated with (b) schemes reflects uncertainty found at fixed order in the fit region

Scheme (a,2) seems to be disfavoured [low χ^2 in coupling fit]

Dependence on kinematics of the hard event

dζ(C)/dη_{gluon}

Non-perturbative shift features a strong dependence on the kinematics of partons in the event. Additional soft radiation can potentially modify the scaling significantly.

	1)	
				-			-		
		I	ı						
			ı	ı	·		ı		
		•	•			•			
								ı	
				_				•	

Effects of additional soft radiation

E.g. shower 2-jet event and assume gluer is softer than all emissions. Significant difference from fixed order near the Sudakov shoulder. Moderate dependence on shower kinematic evolution range [further studies necessary!]

PanScales showers formulated in [Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez '20]

Comparison to large-n_F model: $\gamma^* \rightarrow qq\gamma + gluer$

$$\bar{\Sigma}^{(1)}(O;\lambda) = \int_{O} \frac{d\sigma^{(1)}(\lambda)}{dO} = \bar{\Sigma}^{(1)}_{pert}(O) + \alpha_{s} \frac{\lambda}{Q} \zeta_{O}(O) \frac{d\sigma^{(0)}}{dO} + O\left(\frac{1}{Q}\right)$$
Direct calculation of linear power correction in a large-
theory + naive non-abelianization
(e.g. used for linear renormalon estimate):
realistic model of scaling across the spectrum

Related work in [Ferrario Ravasio, Nason, Oleari '18; Ferrario Ravasio, Limatola, Nason '20]

Comparison to large-n_F model: $\gamma^* \rightarrow qq\gamma + gluer$

(QCD case under study)

ζ(C)/ζ(0)

Summary

- Presence of Sudakov shoulder in the C parameter spectrum allows for the calculation of non-perturbative shift in the symmetric 3-jet configuration [~2 times smaller than in the 2-jet case]
- affected by non-perturbative corrections at the 3-4% level
- the leading $(\sim 1/Q)$ NP shift across the spectrum
- Important to figure out the role of all-order effects to carry out precision phenomenology

Extractions of the strong coupling from lepton-collider event shapes are potentially

Future calculations in the large-n_F model can shed more light on the dependence of

Backup material

Strong coupling fit: datasets

Exp.	Q (GeV)	Fit range	N. bins	Ref.
ALEPH	91.2	0.27 < C < 0.69	22	[49]
ALEPH	133.0	0.20 < C < 0.675	6	[49]
ALEPH	161.0	0.16 < C < 0.675	7	[49]
ALEPH	172.0	0.16 < C < 0.675	7	[49]
ALEPH	183.0	0.16 < C < 0.675	7	[49]
ALEPH	189.0	0.16 < C < 0.675	7	$\left[49\right]$
ALEPH	200.0	0.125 < C < 0.675	8	[49]
ALEPH	206.0	0.125 < C < 0.675	8	$\left[49\right]$
JADE	44.0	0.61 < C < 0.68	2	[50]

Strong coupling fit: correlation model

Model	$\alpha_s(M_Z^2)$	$lpha_0(\mu_I^2)$	$\chi^2/d.o.f.$
ζ_0	$0.1122 \pm 0.0007^{+0.0024}_{-0.0014}$	$0.52 \pm 0.01 \substack{+0.07 \\ -0.04}$	0.813
$\zeta_{a,1} \equiv \zeta_{b,1}$	$0.1142 \pm 0.0006^{+0.0026}_{-0.0015}$	$0.52\pm0.01^{+0.06}_{-0.04}$	0.796
$\zeta_{a,2}$	$0.1121 \pm 0.0007^{+0.0024}_{-0.0015}$	$0.52\pm0.01^{+0.07}_{-0.04}$	0.787
$\zeta_{a,3}$	$0.1100 \pm 0.0008^{+0.0022}_{-0.0014}$	$0.54 \pm 0.01^{+0.07}_{-0.05}$	0.845
$\zeta_{b,2}$	$0.1162 \pm 0.0005 ^{+0.0028}_{-0.0017}$	$0.51\pm0.01^{+0.06}_{-0.04}$	0.822
$\zeta_{b,3}$	$0.1167 \pm 0.0005 ^{+0.0028}_{-0.0018}$	$0.53 \pm 0.01 \substack{+0.06 \\ -0.04}$	0.870
ζ_c	$0.1156 \pm 0.0006^{+0.0027}_{-0.0016}$	$0.48 \pm 0.01 ^{+0.05}_{-0.03}$	0.807

Assume uncorrelated EXP systematics instead of minimal overlap

