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Beyond perturbation theory 

E.g. W mass from Z (lepton) pT distribution
Analytic calc.n

MC data
[Hoang, Plaetzer, Samitz ’18]

E.g. Top mass from template fits

[Ferrario Ravasio, Nason, Oleari ’18] 
Estimates for the pole top mass in: 
[Beneke, Marquard, Nason, Steinhauser ‘17] 
[Hoang, Lepenik, Preisser ’17]

Size of linear renormalon (in large-nF 
model) for pole and MSbar mass

Fit of TMD pdfs from (small pT) DY data
[Bertone, Scimemi, Vladimirov ’19]

๏ Outstanding precision reached in measurements challenges perturbative QFT 
computations at colliders - NP corrections are the bottleneck in several observables



๏ Least precisely known SM coupling, reduction  
of its uncertainty crucial for HL-LHC and FCC 

๏ E.g. impact of current World Average unc. on  
 Higgs prodn in gg fusion
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Strong coupling constant: status

ggF cross section at N3LO QCD

[HE/HL-LHC Yellow Report ’19]



๏ World Average ⟹ spread between determinations  
   

๏ E.g. significant tension between: 

๏ e+e- fits from 2j rate & T/C-parameter        

๏ ⟨lattice⟩ vs. e+e- fits T/C-parameter
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Strong coupling constant: status

[Huston, Rabbertz, Zanderighi ’19]

Analytic hadronisation models  
lead to smaller couplings

↵s(M
2
Z) = 0.1182± 0.0008

↵s(M
2
Z) = 0.1123± 0.0015

~ 3.35 σ
[Hoang, Kolodrubetz, Mateu, Stewart ’15]

[Aoki et al. ’19]

Fit from C parameter w/ N3LL+NNLO perturbation 
theory (+mass effects and analytic NP corrections)

Flavour Lattice Averaging Group 2019



๏ World Average ⟹ spread between determinations  

๏ Optimistic prospects from lattice QCD to reach high 
precision in the coming decade  

๏ At future colliders, high precision extractions possible  
 from EWPO, e.g. ratio of σe+e-→had/σe+e-→μ+μ-
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Strong coupling constant: status

[Huston, Rabbertz, Zanderighi ’19]

see e.g. [Dalla Brida, Ramos ’19]

However, pinning down the above tensions crucial for: 
Control of systematics in combination of fits; 

Understand reliability of hadronisation models; …



Mij(d�
parton

MC

(O) ! d�hadron

MC

(O)), total XS unchanged

6[Verbytskyi, Banfi, Kardos, PM, Kluth, Somogyi, Szor, Trocsanyi, Tulipant, Zanderighi ’19]

partonic hadronic R2 @ N3LO+NNLL:

➟

Difference in Thrust moments

[Gehrmann, Jaquier, Luisoni ’09]

Drawback: tuned with MC generator with low PT accuracy:  
“NP Corrections” might be under/over estimated

Hadronisation: MC models
๏ MC models: control over event kinematics 

๏ E.g. migration matrices w/ unitarity constrn for jet rates



Vast literature: dispersive model, shape function, 
dressed gluon exponentiation, large-nF,… 

๏ Analytic models: in principle usable with state of the art perturbative calculations  
 
 
 
 
 
 
E.g. dispersive model: correction due to radiation of a gluer with (effective) coupling
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Hadronisation: Analytic models

Dispersive representation of QCD coupling 
[i.e. prodn of a system with gluon quantum numbers]

Perturbative counterpart 
[i.e. soft physical coupling scheme]

Drawback: full dynamics complex; expand in powers of  
1/Q and extract the leading term  

[often only near logarithmic singularities]
d�hadron

MC

(O) ' d�parton

MC

(O � ↵
0

Q
�(O))

[Dokshitzer, Marchesini, Webber ’95] [Catani, Marchesini, Webber ’91]   
K(2) in [Banfi, El-Menoufi, PM ’18; Catani, De Florian, Grazzini ’19]

[Dokshitzer, Marchesini, Webber ’95]



๏ E.g. dispersive model: O(1/Q) => shift in the average value of the observable  
 
 C parameter in the 2-jet limit
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⌃hadr.(C) = ⌃pert.(C � h�Ci(C))

Shift in 2-jet limit naturally emerges from structure of log resummation

O({p}, k)

O({p}, k1, k2) O({p}, k1 + k2)

+

+ -

Radiative correction universal for 
additive observable [Milan factor]

+ …

Hadronisation: Analytic models

k2≠0

[Dokshitzer, Lucenti, Marchesini, Salam ’97-’98]



๏ E.g. dispersive model: O(1/Q) => shift in the average value of the observable  
 
 C parameter in the 2-jet limit
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First moment of physical coupling

Obs. dependent coefficient 

Second order corrns (Milan factor)

⇒

h�Ci ' ⇣(C)M µI

Q

4CF

⇡2


↵0(µ

2
I)� ↵s(µ

2
R)� ↵2

s(µ
2
R)

�0

⇡

✓
2 ln

µR

µI
+

K(1)

2�0
+ 2

◆

� ↵3
s(µ

2
R)

�2
0

⇡2

✓
4 ln2

µR

µI
+ 4

✓
ln

µR

µI
+ 1

◆
⇥

✓
2 +

�1

2�2
0

+
K(1)

2�0

◆
+

K(2)

4�2
0

◆�
,

Hadronisation: Analytic models

for derivation see e.g. [Davison, Webber ’08; Gehrmann, Luisoni, PM ’12] (Thrust case)



๏ E.g. dispersive model: O(1/Q) => shift in the average value of the observable  
 
 C parameter in the 2-jet limit
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Subtraction of perturbative component

Hadronisation: Analytic models



๏ Shift extrapolated from the 2-jet limit, scaling across the spectrum neglected! 

๏ 2-jet limit is special in that dependence of δC on hard partons recoil is quadratic,  
 i.e. linear NP shift is independent of kinematic recoil map 

๏ In general, away from this limit, δC depends linearly on recoil scheme 
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Kinematic dependence across the spectrum

Possible to gain any insight on the  
scaling across the spectrum ?

k

pg ?? pq ??

pqb ??



Non-inclusive corrections (i.e. Milan factor) as in 2-jet limit 12

Sudakov shoulder & recoil

⇒

⇣(0)/⇣(3/4) ' 2.1

Quadratic dependence on the energies 
of the hard partons at the shoulder 
[linear corrn insensitive to recoil] O(αs)

O(αs2)

resummed

Insensitivity to recoil map allows for the computation of the NP shift:

[Catani, Webber ’97]

[Luisoni, PM, Salam ’20]
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Impact on strong coupling fit

Toy model: Assume different power scaling 
templates in 0 < C < 3/4. Assess impact on 

fit from experimental data from  
ALEPH & JADE data* [backup] 

ζ(C)=constant [standard assumption]

*Use minimal overlap model for EXP systematics  
  Moderate impact of systematic correlation model [backup] 

Profiled scaling of linear NP shift



Spread of values at the 3-4% level with a similar fit quality 
[scheme (a,2) shows a lower χ2 but disfavoured from  

fixed order checks (next slide)]

Fit based on NNLL+NNLO perturbation theory. 
Theory systematic uncertainty includes : 
[TH uncertainty≡scales (μR, μRES) ⊕ matching ⊕ Milan factor]
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Impact on strong coupling fit

Fit ALEPH+JADE. uncertainties: EXP+TH-TH
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Examine different recoil maps away from singular points

⇣(C) = lim
✏!0

⇡Q

2↵sCF

Z
[dk]M2(k)�C({p0i}, {pi}; k) �(kt � ✏)

⇣(C) =
1

N lim
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2↵sCF

Z
d�qq̄g [dk]M

2
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⇢

k

pg ?? pq ??

pqb ??

Explore different recoil schemes 

๏ Catani-Seymour (CS) scheme: fully local  
 [NB: we partition at equal angles in the event frame!] 

๏ PanLocal scheme: fully local 

๏ PanGlobal scheme: longitudinal d.o.f. local ⊕ transverse  
 global 

๏ Forshaw-Holguin-Plaetzer (FHP): only one longitudinal  
 d.o.f. local ⊕ rest global 

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]

[Catani, Seymour ’96]

[Forshaw, Holguin, Plaetzer ’20]

Fixed order study of scaling (first order)
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Fixed order study of scaling (first order) Scheme (a,2) seems to be disfavoured 
[low χ2 in coupling fit]

Fixed (first) order scaling insensitive to 
assignment of transverse recoil; dependence 

on the longitudinal d.o.f. of the map.  
Spread associated with (b) schemes reflects 

uncertainty found at fixed order  
in the fit region
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Dependence on kinematics of the hard event

Non-perturbative shift features a strong 
dependence on the kinematics of partons 
in the event. Additional soft radiation can 

potentially modify the scaling 
significantly. 
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PRELIMINARY

[Beware: statistical unc. not included !]
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E.g. shower 2-jet event and assume gluer is 
softer than all emissions. Significant 
difference from fixed order near the 

Sudakov shoulder.  Moderate dependence 
on shower kinematic evolution range 

[further studies necessary!] PRELIMINARY
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Comparing different shower setups (PG-gluer with CF=3/2)

1 emission (PG09), fxed coupling, αs=0.03
PL05 shower: rts=91.2, ktmin=0.5
PL05 shower: rts=91.2, ktmin=1.0
PL05 shower: rts=44.0, ktmin=0.5

E.g. Preliminary study with PanScales showers

[NB: does not include qqg matrix element]

Small coupling ≃ fixed order

Showered  
results

Effects of additional soft radiation

PanScales showers formulated in 
[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]

Many thanks to Gavin Salam for  the plot
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Comparison to large-nF model: 𝜸*→qq𝜸+gluer

Direct calculation of linear power correction in a large-nF 
theory + naive non-abelianization  

(e.g. used for linear renormalon estimate):  
realistic model of scaling across the spectrum

Many thanks to Silvia Ferrario Ravasio for the plot 
[talk @ KITP 2021]

PRELI
MINARY

Related work in  
[Ferrario Ravasio, Nason, Oleari ’18; Ferrario Ravasio, Limatola, Nason ’20]



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

⇥ ⌃̄
(C

;�
)
�

⌃̄
p
er

t(
C

)⇤ /
h ↵

s
� Q
⇣ C

(0
)

d
�

d
C

i

⌃̄(1)(C; �) =
R 1

C dC 0 d�(1)(�)
dC 0 ⇡ ⌃̄(1)

pert(C) + ↵s⇣C(C) �
Q

d�(0)

dC

�C(0.75) Luisoni etal.
�
Q = 0.005

�
Q = 0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
C

0.96

0.98

1.00

1.02

%
/b

lu
e

T (�) = V (�) + R(�) + �qq̄(�)

20

Comparison to large-nF model: 𝜸*→qq𝜸+gluer

In the QED case we find no dependence on the recoil 
scheme, result agrees with large-nF calculation ! 

(QCD case under study)

Many thanks to Silvia Ferrario Ravasio for the plot 
[talk @ KITP 2021]

PRELI
MINARY
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Summary
๏ Presence of Sudakov shoulder in the C parameter spectrum allows for the 
calculation of non-perturbative shift in the symmetric 3-jet configuration  
[~2 times smaller than in the 2-jet case] 

๏ Extractions of the strong coupling from lepton-collider event shapes are potentially 
affected by non-perturbative corrections at the 3-4% level  

๏ Future calculations in the large-nF model can shed more light on the dependence of 
the leading (~1/Q) NP shift across the spectrum  

๏ Important to figure out the role of all-order effects to carry out precision 
phenomenology



Backup material
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Strong coupling fit: datasets
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Strong coupling fit: correlation model Assume uncorrelated EXP 
systematics instead of  

minimal overlap


