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Effective Action

The effective action I'[¢] is an important quantity in QFT
@ Determines the ground state of the quantum theory
@ Determines the vacuum energy density
@ Generates one-particle irreducible diagrams

Formalism developed in Coleman and Weinberg (1973)

To determine the ground state, need to compute I'[$] in a systematic
expansion, and sum the large logarithms.

Coleman and Weinberg (1973).
Abelian Higgs model with m3 ~ Av2, mj ~ €?v?

RG improve by evolving to a scale i ~ v. Example where quantum
effects lead to symmetry breaking.
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Logarithms of the form
2

m
AMn —
12

lead to a breakdown of fixed order perturbation theory. Solution is to
pick p ~ m.

In a multi-scale problem, cannot pick a single i that works for all

masses 5

2

m m
)\In—g )\In—zL
1Y w

Construct a sequence of EFTs, and integrate out heavy scales

Surprisingly, this had not been done (correctly) so far.
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WiJ]

ZlJ) = er M — / [] Dy? e (Sl axde) - 5(p) = / d*x L(¢)
a

W/[J] is the generating function for all connected Feynman diagrams

Define the classical background field ¢ as the expectation value of the
field ¢ in the presence of a source J(x),
Ay _ 1 H(S(p)+ [ dtx ) _ OWIJ]
200 = (200 = 37 [ De el ef = 5009
When J = 0,
@(X)]y=0 = Po

is the expectation value of ¢ in the true vacuum of the theory.
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Effective Action: I'[{]
The 1PI effective action is the Legendre transform of W([J],

181 = Wi - [ @t J00200)
Expand in derivatives:
A 4 A a1, A\2
Mol =~ [ & Vow(®) + [ d"x 52(8)(0u2)" + -
Vew is the Coleman-Weinberg potential Vo

The effective action I'[] is given by the sum of 1Pl graphs

PY +—‘—+++% ..

with ¢ on the external lines.
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Effective Action

gl T[]
o0 - YT S

J=0
For constant &,

OVew(®)
op

#0

@ ¢ is () in the true ground state with J =0
@ V(o) is the vacuum energy density of the ground state

Aneesh Manohar 23.03.2021 7/54



Coleman-Weinberg

S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888
@ Set up the formalism to compute Veop
@ Explained the physical significance of Vo
@ Computed Vg for A\¢* theory and the Abelian Higgs model
@ Showed how to RG improve Vpop
@ Wrote down the general one-loop formula for Vg,

VCW(S?’) = Vtree(@) + hV1 —Ioop(@) + O(hz)

Vtree = V(@) +A

Aneesh Manohar 23.03.2021 8/54



Coleman-Weinberg

In the MS scheme:
1 [ W 3 <Nz MEMe 3
Vit0p = @{Tr w [In e 5} —2Tr (MFMF) [In 5

1%
M2 5
4 %

Sum over real scalars, Weyl fermions, and real gauge bosons. W is
the scalar mass matrix

N 02V (¢

Me(p) and My () are the fermion and gauge boson mass matrices
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Coleman-Weinberg

Logarithms of the form

n ™
n_
12

RG improvement by using a scale . ~ m.

Coleman-Weinberg: RG improvement for a single-scale problem. Want to
extend this to multi-scale problems.

Cannot choose a single ;. to minimize all the logarithms.

Typical EFT problem where one integrates out heavy particles and
constructs a sequence of EFTs.
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What is the problem?

Integrate out a heavy particle to get EFT interaction:

" ____ . + " -=- -. — ‘.:'Aj'.‘ov.',:::

2 ways 1 way

The second diagram should not be part of the CW potential
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Jackiw’s method for computing I'[?]

R. Jackiw, Phys. Rev. D9 (1974) 1686
In the functional integral, let ¢(x) = @(x) + ¢q(X)

Z[J] = e WM — / [[ Dyt o T 3[cz e Gea) |
a

so that

oiT8] _ o (WII-Ja*xJ3) _ /H Dy? e%fd“x[z:(@ﬂoq)w vq |
a

We need to adjust J(x) so that

(p(x)) = @(x) = (pq(X)) =0 tadpole condition
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Jackiw’s method
Wirte ¢ as the sum of a background (classical) and quantum field:

p(X) = A(X) + ¢q(x)

R 1 N oasa 1 R
L(p+¢q) = 5(0upq)® = N@) — 8(P)pg — 5m*(9)PG
T3 1o .04
- gp(w)soq — 52\ (P)eg +

@ A, o, m?,p, )\ etc. are couplings before the shift
@ A, etc. are couplings after the shift and depend on &(x)
@ A(®) = V(@) + A is the cosmological constant after the shift.

Use a source
J=6+T

with 7 formally of one-loop order.



Tadpole Condition

—, + — O+
_Q+

This is the same as the 1Pl condition

and is another way of proving that I'[?] is the sum of 1P| graphs.
o = = = DA



Procedure

Use

L= L(pg+ @)+ Jog

1 . 1 o, 1.
= 5(0upa)® — @)+ Tpg — 5 (2)05 — 57(P)vq — 54

and treat 7 as formally of one-loop order.

@ Shift the field
@ Drop the linear termin ¢q in £
@ Add a source J for the quantum field
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B-functions determined by consistency

0
+/8/ ’ch‘Pa Vew =0.

A, m?, etc. denoted generically as {);}, and satisfy the -function
equations

dA;
O = B,

where
7]
= In —
167T " ,uo
7, is the anomalous dimension of ¢,
de
d_t = Yo P-
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Example: Higgs-Yukawa Model

Higgs-Yukawa Model:

Ne
L= S0P+ S i n— (e + ge)betx — V()

k=1

with scalar potential

p A
V(p) = /\+o<p+ 5 go +6<,0 +24<p

92V

1
W(p) = 82—m3+p90+2w2, Me(p) = mg + g,

are the scalar and Dirac fermion mass matrices.
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B-functions from One-loop Potential

0 0 0
[/3/' - ’Ygo‘P%] Viree + =3 Vi—1o0p = 0

ag; ot
P ) 1 2 3
= [ﬁ;a—gi _ Wp%] Viro = 5T W2 = Tr (MLMF) + STy

Equating powers of ¢ gives one-loop s-functions:

1
/3/\—5

By = Mzp — 8Nrgm} + 740,
Birg = AME + p? — 24Npg?m2 + 2~,m3

mpg — 2Npm}

By =3A\p — 48Npg®mg + 37,p,
B = 3)\% — 48NErg* + 4y, ).

Can use this for higher dimension operators such as (H'H)3 in SMEFT
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Shifted Lagrangian
Shifted parameters after ¢ = @ + ¢q

Mg = Mg + g@,

A

g=g9,
A=At o+ 1mBe? + Lpp® + gt
2 6 24 ’
1 1

6 =0+mgp+ 5+ 20,

N L1
Mg = mg+ pp+ 5782,

p=p+A2,

A=,

B-functions for the hatted couplings are given by the same functions
Ai = Bi{Ai}) Ai = Bi({Ai})



Constraint on -functions
Shift invariance:

0] 0 01 o0 %
0] 0 0 0 T
A smi m 0 0
ale mZBp 4gm3 0 V40
ai m3| =c1 [AmE+ 02| + e 1292m2 +eo3| O |+ | 2ym3
P 3Xp 24g°mg 0 3v4p
A 32 249* 0 Ay
me 0 0 gsz 27¢m,:
L g | 0 L 0 L ¢ 1 Ll +2mw)g.

The B-functions are given in terms of ¢ 2 3 and v -

Strongly constrains the form of the g-functions
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RG Improvement

LL NLL NNLL

V= 2L

RG improvement sums the AL series because the g-functions being

integrated do not contain logarithms.

We can check our method because the explicit two-loop results are

known.

)\2

tree
1-loop
2-loop
3-loop
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LL series: tree-level matching and one-loop running
LL + NLL series: one-loop matching and two-loop running

We will compute the boxed terms to compare with known results.
Requires in addition to the LL terms, the one-loop matching for V.

The two-loop (AL)? term is obtained by integrating one-loop results,
and is a non-trivial check of the method

Vew is the cosmological constant after everything has been integrated
out.

Aneesh Manohar 23.03.2021 22/54



Example: Two Scalar Fields in the Broken Phase

Consider a theory with two scales
@ X4 the heavy field
@ ¢4 the light field
o vy >y
@ z <1~ vy/v, is the expansion parameter

Ap
2 24
A
= 2@ = VE - VD) — A

P VP~ A VAP

£= 200 + 3 (0,00 - X8 VA

Compute V(8, ), where § = (x(u0)), etc.
Work to order z4.
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L(6, X o)
Ai(po), Mko)

6=0+dq
X=X+xq
drop linear

o)
_ £(dq:xg: 10)
Ai(d: R, 1o0)s N(@,X; o)

A(1o)
Ho
1
r
. £(¢qug;lfH)
Ai(@, % 1er)s ND, R, i)

Apr)

integrate out x4
_ Lerr(¢q h) )
X(d, %, 10)s (B, %, 1m) "

HH

1
HL
_ Lerr(g, )
i@, Rs 1) N, R )

integrate out ¢q

Ape)
all fields integrated out
=] = = E nae
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Mass Hierarchy

Wiy = %AXV;?—'_ %)‘x (féz - Vi) + %)\3 <¢A52 — Vg) ,
o ’

~

-~

1 72

Wy = %Mn (3552 - Vi) + %As <>“<2 - v)f)/,

~~

Z2

W¢>x = de> = )‘3‘7392 :
V4

For a mass hierarchy:

>A<2—V§N22, ¢A>2~v(§~22
so that
W~ 1, Wy~ 22, W =Wy~ 2.
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The cosmological constant is

Ag
24

- . Ay A3~ .
A =538 = VB + (R = VP + (S — VDR - VD) + A
in shifted theory.

Tree-level matching by integrating out x4 using shifted Lagrangian with
sources J, and J:

Couplings in EFT after x4 integrated out denoted ), etc.

EFT parameters depend on J, and 7, .
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Xy is the linear term in x4

o A 1. .
Lo -Xi(da)xg  Xi(dq) = akboq + ZAakeg — Iy
X1 ~ Z2.

Integrating out x4 gives a quadratic term in the EFT

fero it s Iy P
M

Aneesh Manohar
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Compute V¢ to order z*:

3/\392 jx

- 9)\2 o2
N, = 28 L 02,
Ay Vg
—p=pH 4 9AZR? .
prE g [Aqs - )\X3v§ +0(2°) = A+ 0(2%),
o ey 1 . 1 3228242
2 p=py 1 2 2 ! ~2 2\ 943
At g (36 - 1E) + p0a (- ) A V2
_,  3AX T
=m? + —2X +0(z%
Ay Vg
- BN\sko T,
S gy 2O o)
Ay V2

2
o 3 JX)
H=ZhH A A 6
AN"=""N+ Vinatch — 23, V2 +0(2°)

2
Ay Vg

+0(z2%),

EFT couplings depend on the sources 7, and 7 which have not yet been

determined
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Graph S Integrand v
’ R 1 2 g2 [ 1 Wy 3
1] X L PP W) | e TR [_Z +3in B Z]
/,-.
2 a 1 Wio Woy 1 Wxx
| x| 2| PWP 522 Wi Wy [—1 +1In T — 1
\
\‘\.,.
/,-.
4 a 1 WyoWox  Wos 1 WyoWor Woo | Wxx _
z X :\ °0 | 2 (PP—Wyx)P? p? 32m2 Wix + In 1
\‘\.,.
X e @
! 2 2
4 ¢ 4 1 Wieo Wox 1 W W5, [i —1in Wxx + 1]
/! 4 (PP—Wyx)2p* 3272 W2 2¢
R

Full theory graphs expanded in the low scale, i.e. in z

Aneesh Manohar

23.03.2021

29/54



1 W, 3
Vinaten (1) = W{ {'” /é’x - 21 We,+ 2

2 1N/2
Wix _ 1] 2Woo Wox W _ {In Wi _ 2] chb W¢x}

N% Wix /ﬁ/ fo

In WXX — 1‘| 2WX¢W¢X

In

_|_

where the first term is order 1, the second term is order z2, and the last
two terms are order z%.

Run the EFT Lagrangian down from uy to u; using the EFT S-functions.
Compute Coleman-Weinberg potential at 1, (or equivalently, integrate out

bq at py):

e 1 ~4 r~n2(NL) 3
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o e A

e A+w+7w tg¥ tog¥
1, |
7. =0, ﬂA:§m7 o
B = AP + p?, Bp=3Xp, e

with solution
A) = Mpo) 1,
P(M) = p(/J/O) 7’]71

)

mP(p) = mP(uo) {nﬂ/s {1 - %6] . %&]71} |

_ m2(No)p(M0)
o(p) = o(uo) + )\(H )
Aw) = ANuo) + 4(110)

2\ (o)
where

st 1) raor (120

25)1
{ (3- 6£+2£2)_*§(£ 2y, 118 (g e,
)

1,
+358m }
I
Z@IHF

i

2
2° (ko)
=1-3\(po)t, €=t .
0 n (lu‘ ) )\(Ho)mZ(NO)
o IS = = o



Tadpole Condition
Fix J, and J; by

(xq(10)) =0 (¢q(p0)) =0

We are in the EFT where x4 has been integrated out. But we started
with

/DXq Doy el[S+[ Txxa+Tsdd]

E = (Xq)
and we have computed the EFT keeping 7, J4,

iS
0= 6JX/D¢eE”:<Xq> 0
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Xq tadpole in EFT

We can compute the tadpole of the heavy field using the EFT

jx(MH)

St (o8] = 22 ) + )

- +
2m2(pp) U N m2(up) H)

Xq(pH) =

i

and the tadpole condition becomes

Tun) = ol ([42])

H

since (¢q) = 0.
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RG Improve the Tadpole

Need to compute the RG improved tadpole. [qﬁ%} L has no large
logarithms since p; ~ my.

([2]), = ez [ T 1]

RG equations in the EFT relate [¢3] ,, and [#2] .., by integrating
operator anomalous dimension

dro21_ 5,2 ~ 2
o [6] = -3[] - 2500 - 272,
This gives the RG improved tadpole
23.03.2021  34/54



The result is the RG-improved Coleman-Weinberg effective potential,
given by substituting the RG improved tadpole into the formula for
A(pr)-

The explicit form is complicated because the solution of the RG
equations is complicated.

Need the full EFT Lagrangian, not just A because the running of A
depends on all the couplings

Expand and identify the LL terms to compare with existing calculations

Expand in

1672y
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Expansion in ¢
RG evolution of the cosmological constant:

M) = Muw) + ST ui)t + 3 am) [N 72 i) + 7o) € 4.

Rewriting m? in terms of m? and J,(u4) using the matching condition:
1

_ 2 1 NRPP? AR
2 ! 2 2 ! 2 2\ 3 3XJx
A = gt (30 —8) + 30 (V- 0) - =+

m

)\SXJX

X

=m? 4+ 22X

and using the matching condition for A:

A “ At Vi — @ 6
N(pH) = N+ Vinaten 2m2 +0(2°).
mX
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Expand in t
Logarithmic terms:

A) = St (ui)t+ 572 (i) [N 2 () + ()| £
mZ () As (1) R  (Fpm)) N
m2 (i) 2m2(up)

-~

= t2

jx(MH)t

LL Tadpole:

Ti(bm) = Aa(pm) X M2 (1)t

-

t

(remember 7 is one-loop, so starts at order t)
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A=Xs—3
] m)z(
~ A5R2 3X 2A2 2 3X" ~4
ANpr) = (up)t+ 5 Ag — 3 = mZ 4+ | Xy —3 > o m= + >
X X X
2
1 1 AM 22521 o,
:Emi(uH)t+§ Ag — 2 mt 4+ [Ny — 33| #PmP )
X X
The t? term is multiplied by 2/3.
Lo v (Y -

C. Ford and D. Jones, PLB274 (1992) 409
C. Ford, I. Jack, and D. Jones, NPB387 (1992) 373

S. Martin, PRD65 (2002) 116003
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Fixed Order Result

in terms of mass eigenstates

1 1
v
1672 (16722

v=v0O0_ L ____ ve 4o

1 m? 3
1) _ E: 4 r
)_Z'_mr(lnF_§>

1 1

Ve — 12)‘Uk)‘kaSSS(m2 mi) + g)‘ii]ffSS(miz’ m/2)

v PV N OV
™ 961000k T 06i0¢;00k06r
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Fixed Order Result

foss(mf, m§, m) = —

A+2 2AIn A
T mz{—5+ "

—|n2§ —8Q(A)},

which is given in terms of A = m3/m3.
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Fixed Order Result

Qa) =

m/ In(2cosh x) d
A+2
for A > 4, and by

QA) = \/ﬂ

A+2 / In(2sin x) d

o= 5V

1
sinf =

VA
2\/_,

[} - 7 ) N
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Numerics

V (10°GeV*)
3.0F

2300 200 100 100 200 a0 PGeV)
Ag A A3
% _ 01 X_ 02 = 0.04
ez =01, 6z =025, o =004,
at the scale py and

Vs = 246 GeV

v, =500TeV,
Viree ~ 10° GeV*

- = - E DA
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1

Viaten(1h) = 57—
ot 3] [
+0
+0
+0

1

The order 1 term gives a constant shift of ~ —2.6 x 1022 GeV* , about 13
orders of magnitude larger than the tree-level contribution.

Aneesh Manohar
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z° terms

V (10"GeV*)
4 -

2t

200 250 300 350 #(CeV)

=2t

4L

The order z2 contributions. The blue and orange curves are from the
first and second rows. The two values happen to be nearly equal for
our particular choice of input parameters.

V ~ x101° GeV*
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z* terms

V (108GeV*)
4 -

3‘50 @ (GeV)

-2+

4l

The tree-level potential and the order z* contributions The blue curve
is the tree-level potential, and the orange, green, red and purple
curves are the z* terms in the four rows

Aneesh Manohar 23.03.2021 45/54



The instability is related to the cosmological constant and hierarchy
problem.

Need to make sure the low-energy particle ¢ remains light.

A simple solution is to match at the scale

1
2 0
PH= g W>£x)
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One-loop Matching for Vew

( 0 2 2 2 3\
3 [WR]" o +[w?)]
(2)
K0 40 42wl
1 XX
Vinateh (1tH) = 642 +0 +0 +0
2
+0 40 +<W‘;’;£§X¢>
XX
{ 1 z2 z4 )

There are no z2 corrections. Radiative corrections to Vg are under
control.

A large shift in the cosmological constant remains (independent of
and ¢)



RG improved Vew

V (GeV*)
8x10°

6x10°
4x10°

2x10°

500 ¢ (GeV)

-2x10°
-4x10°
blue: tree-level potential
orange: fixed order potential at one-loop

green:  RG improved potential neglecting the tadpole
red: RG improved potential

X equal to its value at the minimum.
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Previous Work
@ O(N) model
@ two scalar fields in the unbroken phase
@ two scalar fields in the broken phase
@ Higgs-Yukawa model with mg > mg or mg > mg
In all cases our results agree with explicit two-loop calculations.

Higgs-Yukawa model:
J. Casas, V. Di Clemente, M. Quiros, NPB553 (1993) 405,

M. Bando, T. Kugo, N. Maekawa, and H. Nakano, Prog. Theo. Phys. 90 (1993) 405

¢ = —29°NOr¢ = —40F ¢,
9 =3080r9° +40Fg
mg = \m30g + 2v,0Fm3
A = 30205 — 48g*NOF + 4y40F ),
1
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Goldstone Boson IR Divergence Problem

S. P. Martin, PRD89 (2014) 013003, S. P. Martin, PRD90 (2014) 016013,
J. Elias-Miro, J. Espinosa, and T. Konstandin, JHEP 08 (2014) 034

O Q

Q.
oW¥e

top quarks and ¢ and ¢z, which are propagating degrees of freedom
in R: gauge.

IR divergence in the SM model at three-loops and beyond
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2 2
o_ Yo o Mg
Zpp(P7) = —g 5 MEIn 2

to the ¢ mass. At ¢ loop order — i.e. with ¢/ — 1 fermion loops, get

-1 W,
V ~ (y2)! (mﬁ-) W3 —t [m ML
F

and leads to an infrared divergence as W,,, — 0 for / > 3 loops. This
is the Goldstone boson infrared divergence problem.

Expansion in m2/mZ

EFT says to use the one-loop corrected mass
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,4444
e - - -

(e) (f) (9) (h)

One-loop contributions to the ¢ two-point function. The dotted lines are
¢, the dashed lines are hy and the solid line is the fermion .

[¢] includes some 1Pl graphs
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1

Y oo(P?) = 167{_AZO(W,,h) — 4)2RPBy(0, Wi, 0) + 2y2ZO(m2F)}
1

BA2h2_ \h _
— o Ao(Whn) — 4v2 = — ymp Ag(m?)
Whh Whh

+

2)‘7;?' +0 (22) ;

1672

o
%

N
4

ITpp(0) = Wiy + Zw(pz =0)=
Consequently, at the minimum of the potential where J = 0, at one-loop order

Fop(p=0)=0,
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Conclusions

@ Formalism to systematically improve the CW potential
@ The (AL)? agrees with existing two-loop fixed order calculations

@ The formalism applies also to

» gauge case
» higher orders

without change
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