The Renormalization-Group Improved Effective Potential

Aneesh Manohar (jointly with Emily Nardoni)

23 Mar 2021

1/54

Two-loop computation of the CW potential

Ford and Jones (1992), Martin (2002)

RG summation

Bando, Kugo, Maekawa, Nakano (1992)

Casas, Di Clemente, Quiros (1998)

Iso and Kawana (2018)

Okane (2019)

Other approaches

Einhorn and Jones (1984)

Ford (1994)

Nakano and Yoshida (1994)

Many other papers

This talk: E. Nardoni, AM arXiv:2010.15806

4 - > 4 - B >

Aneesh Manohar 23.03.2021

2/54

Effective Action

The effective action $\Gamma[\hat{\varphi}]$ is an important quantity in QFT

- Determines the ground state of the quantum theory
- Determines the vacuum energy density
- Generates one-particle irreducible diagrams

Formalism developed in Coleman and Weinberg (1973)

To determine the ground state, need to compute $\Gamma[\hat{\varphi}]$ in a systematic expansion, and sum the large logarithms.

Coleman and Weinberg (1973):

Abelian Higgs model with $m_\phi^2 \sim \lambda v^2$, $m_A^2 \sim e^2 v^2$

RG improve by evolving to a scale $\mu \sim v$. Example where quantum effects lead to symmetry breaking.

Aneesh Manohar 23.03.2021 3/54

Logarithms of the form

$$\lambda \ln \frac{\mathit{m}^2}{\mu^2}$$

lead to a breakdown of fixed order perturbation theory. Solution is to pick $\mu \sim m$.

In a multi-scale problem, cannot pick a single $\boldsymbol{\mu}$ that works for all masses

$$\lambda \ln \frac{m_H^2}{\mu^2} \qquad \lambda \ln \frac{m_L^2}{\mu^2}$$

Construct a sequence of EFTs, and integrate out heavy scales

Surprisingly, this had not been done (correctly) so far.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

4/54

W[J]

$$Z[J] = e^{rac{i}{\hbar}W[J]} = \int \prod_a D\varphi^a \; e^{rac{i}{\hbar} \left(S(\varphi) + \int \mathrm{d}^4 x \, J\, \varphi
ight)} \;, \qquad S(\varphi) = \int \mathrm{d}^4 x \; \mathcal{L}(\varphi)$$

W[J] is the generating function for all connected Feynman diagrams

Define the classical background field $\hat{\varphi}$ as the expectation value of the field φ in the presence of a source J(x),

$$\hat{\varphi}(x) = \langle \varphi(x) \rangle_J = \frac{1}{Z[J]} \int D\varphi \ \varphi(x) \ e^{\frac{i}{\hbar} \left(S(\varphi) + \int d^4 x \ J \varphi \right)} = \frac{\delta W[J]}{\delta J(x)} \ .$$

When J = 0,

$$\hat{\varphi}(x)|_{J=0} \equiv \hat{\varphi}_0$$

is the expectation value of φ in the true vacuum of the theory.

Aneesh Manohar 23.03.2021

5/54

Effective Action: $\Gamma[\hat{\varphi}]$

The 1PI effective action is the Legendre transform of W[J],

$$\Gamma[\hat{\varphi}] = W[J] - \int d^4x \ J(x)\hat{\varphi}(x) \ ,$$

Expand in derivatives:

$$\Gamma[\hat{arphi}] = -\int \mathrm{d}^4 x \ V_{\text{CW}}(\hat{arphi}) + \int \mathrm{d}^4 x \ rac{1}{2} Z(\hat{arphi}) (\partial_\mu \hat{arphi})^2 + \dots$$

 V_{CW} is the Coleman-Weinberg potential V_{CW}

The effective action $\Gamma[\hat{\varphi}]$ is given by the sum of 1PI graphs

with $\hat{\varphi}$ on the external lines.

Effective Action

$$\frac{\delta\Gamma[\hat{\varphi}]}{\delta\hat{\varphi}(x)} = -J(x) \quad \Rightarrow \quad \frac{\delta\Gamma[\hat{\varphi}]}{\delta\hat{\varphi}(x)}\bigg|_{J=0} = 0 \ .$$

For constant $\hat{\varphi}$,

$$\left. \frac{\partial V_{\text{CW}}(\hat{\varphi})}{\partial \hat{\varphi}} \right|_{\hat{\varphi}_0} = 0 \; .$$

- $\hat{\varphi}_0$ is $\langle \varphi \rangle$ in the true ground state with J=0
- $V(\hat{\varphi}_0)$ is the vacuum energy density of the ground state

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

7/54

Coleman-Weinberg

S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888

- Set up the formalism to compute V_{CW}
- Explained the physical significance of V_{CW}
- Computed V_{CW} for $\lambda \phi^4$ theory and the Abelian Higgs model
- Showed how to RG improve V_{CW}
- ullet Wrote down the general one-loop formula for V_{CW}

$$egin{aligned} V_{\sf CW}(\hat{arphi}) &= V_{\sf tree}(\hat{arphi}) + \hbar V_{\sf 1-loop}(\hat{arphi}) + \mathcal{O}(\hbar^2) \ & V_{\sf tree} &= V(\hat{arphi}) + \Lambda \end{aligned}$$

8/54

Coleman-Weinberg

In the $\overline{\text{MS}}$ scheme:

$$\begin{split} V_{\text{1-loop}} &= \frac{1}{64\pi^2} \bigg\{ \text{Tr } W^2 \left[\ln \frac{W}{\mu^2} - \frac{3}{2} \right] - 2 \, \text{Tr } \left(M_F^\dagger M_F \right)^2 \left[\ln \frac{M_F^\dagger M_F}{\mu^2} - \frac{3}{2} \right] \\ &+ 3 \text{Tr } M_V^4 \left[\ln \frac{M_V^2}{\mu^2} - \frac{5}{6} \right] \bigg\} \; , \end{split}$$

Sum over real scalars, Weyl fermions, and real gauge bosons. W is the scalar mass matrix

$$W_{ab}(\hat{\varphi}) = \frac{\partial^2 V(\hat{\varphi})}{\partial \varphi^a \partial \varphi^b}$$

 $M_F(\hat{\varphi})$ and $M_V(\hat{\varphi})$ are the fermion and gauge boson mass matrices

9/54

Coleman-Weinberg

Logarithms of the form

$$\ln \frac{m^2}{\mu^2}$$

RG improvement by using a scale $\mu \sim m$.

Coleman-Weinberg: RG improvement for a single-scale problem. Want to extend this to multi-scale problems.

Cannot choose a single μ to minimize all the logarithms.

Typical EFT problem where one integrates out heavy particles and constructs a sequence of EFTs.

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

10/54

What is the problem?

Integrate out a heavy particle to get EFT interaction:

Look at loop diagrams contributing to CW potential (in a $\hat{\varphi}$ background)

The second diagram should not be part of the CW potential

Aneesh Manohar 23.03.2021 11/54

Jackiw's method for computing $\Gamma[\hat{\varphi}]$

R. Jackiw, Phys. Rev. D9 (1974) 1686

In the functional integral, let $\varphi(x) = \hat{\varphi}(x) + \varphi_q(x)$

$$Z[J] = e^{\frac{i}{\hbar}W[J]} = \int \prod_{a} D\varphi_{q}^{a} \ e^{\frac{i}{\hbar}\int \mathrm{d}^{4}x \left[\mathcal{L}(\hat{\varphi} + \varphi_{q}) + J\frac{(\hat{\varphi} + \varphi_{q})}{q}\right]} \ ,$$

so that

$$e^{\frac{i}{\hbar}\Gamma[\hat{\varphi}]} = e^{\frac{i}{\hbar}\left(W[J] - \int \mathrm{d}^4 x \, J\, \hat{\varphi}\right)} = \int \prod_a D\varphi_q^a \, e^{\frac{i}{\hbar}\int \mathrm{d}^4 x \left[\mathcal{L}(\hat{\varphi} + \varphi_q) + J\frac{\varphi_q}{\varphi_q}\right]}$$

We need to adjust J(x) so that

$$\langle \varphi(x) \rangle = \hat{\varphi}(x) \implies \langle \varphi_q(x) \rangle = 0$$
 tadpole condition

Aneesh Manohar 23.03.2021 12/54

Jackiw's method

Wirte φ as the sum of a background (classical) and quantum field:

$$\varphi(\mathbf{X}) = \hat{\varphi}(\mathbf{X}) + \varphi_q(\mathbf{X})$$

$$\begin{split} \mathcal{L}(\hat{\varphi} + \varphi_q) &= \frac{1}{2} (\partial_{\mu} \varphi_q)^2 - \hat{\Lambda}(\hat{\varphi}) - \hat{\sigma}(\hat{\varphi}) \varphi_q - \frac{1}{2} m^2(\hat{\varphi}) \hat{\varphi}_q^2 \\ &- \frac{1}{6} \hat{\rho}(\hat{\varphi}) \varphi_q^3 - \frac{1}{24} \hat{\lambda}(\hat{\varphi}) \varphi_q^4 + \dots \end{split}$$

- Λ , σ , m^2 , ρ , λ , etc. are couplings before the shift
- $\hat{\Lambda}$, etc. are couplings after the shift and depend on $\hat{\varphi}(x)$
- $\hat{\Lambda}(\hat{\varphi}) = V(\hat{\varphi}) + \Lambda$ is the cosmological constant after the shift.

Use a source

$$J = \hat{\sigma} + \mathcal{J}$$

with \mathcal{J} formally of one-loop order.

Aneesh Manohar 23.03.2021 13/54

Tadpole Condition

$$-\hat{\sigma}$$
 + $-$ + ... + $=$ $=$ 0

$$+ \dots + \longrightarrow_{\mathcal{J}} = \longrightarrow = 0$$

This is the same as the 1PI condition

and is another way of proving that $\Gamma[\hat{\varphi}]$ is the sum of 1PI graphs.

Aneesh Manohar 23.03.2021 14/54

Procedure

Use

$$\begin{split} \hat{\mathcal{L}} &\equiv \mathcal{L}(\varphi_q + \hat{\varphi}) + J\varphi_q \\ &= \frac{1}{2}(\partial_{\mu}\varphi_q)^2 - \hat{\Lambda}(\hat{\varphi}) + \frac{\mathcal{J}\varphi_q}{2} - \frac{1}{2}m^2(\hat{\varphi})\hat{\varphi}_q^2 - \frac{1}{6}\hat{\rho}(\hat{\varphi})\varphi_q^3 - \frac{1}{24}\hat{\lambda}(\hat{\varphi})\varphi_q^4 + \dots \end{split}$$

and treat \mathcal{J} as formally of one-loop order.

- Shift the field
- Drop the linear term in φ_q in \mathcal{L}
- ullet Add a source ${\mathcal J}$ for the quantum field

(ロ) (個) (重) (重) (重) のQ()

15/54

β-functions determined by consistency

$$\label{eq:cw} \left[\frac{\partial}{\partial t} + \beta_i \frac{\partial}{\partial \lambda_i} - \gamma_\varphi \varphi \frac{\partial}{\partial \varphi} \right] \, V_{\text{CW}} = 0 \, .$$

 λ , m^2 , etc. denoted generically as $\{\lambda_i\}$, and satisfy the β -function equations

$$\frac{\mathrm{d}\lambda_i}{\mathrm{d}t} = \beta_i(\{\lambda_i\})\,,$$

where

$$t \equiv \frac{1}{16\pi^2} \ln \frac{\mu}{\mu_0} \,,$$

 γ_{φ} is the anomalous dimension of φ ,

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\gamma_{\varphi}\,\varphi\,.$$

23.03.2021

16/54

Aneesh Manohar

Example: Higgs-Yukawa Model

Higgs-Yukawa Model:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \varphi)^{2} + \sum_{k=1}^{N_{F}} i \, \overline{\psi}_{k} \, \partial \!\!\!/ \psi_{k} - (m_{F} + g \varphi) \overline{\psi}_{k} \psi_{k} - V(\varphi)$$

with scalar potential

$$V(\varphi) = \Lambda + \sigma \varphi + \frac{m_B^2}{2} \varphi^2 + \frac{\rho}{6} \varphi^3 + \frac{\lambda}{24} \varphi^4.$$

$$W(\varphi) = \frac{\partial^2 V}{\partial \varphi^2} = m_B^2 + \rho \varphi + \frac{1}{2} \lambda \varphi^2, \qquad M_F(\varphi) = m_F + g \varphi,$$

are the scalar and Dirac fermion mass matrices.

17/54

β -functions from One-loop Potential

$$\begin{split} & \left[\beta_i \frac{\partial}{\partial g_i} - \gamma_\varphi \varphi \frac{\partial}{\partial \varphi} \right] \, V_{\text{tree}} + \frac{\partial}{\partial t} V_{1-\text{loop}} = 0 \\ \Longrightarrow & \left[\beta_i \frac{\partial}{\partial g_i} - \gamma_\varphi \varphi \frac{\partial}{\partial \varphi} \right] \, V_{\text{tree}} = \frac{1}{2} \text{Tr} \, W^2 - \, \text{Tr} \, \left(M_F^\dagger M_F \right)^2 + \frac{3}{2} \text{Tr} \, M_V^4 \, . \end{split}$$

Equating powers of φ gives one-loop β -functions:

$$\begin{split} \beta_{\Lambda} &= \frac{1}{2} m_{B}^{4} - 2 N_{F} m_{F}^{4} \,, \\ \beta_{\sigma} &= m_{B}^{2} \rho - 8 N_{F} g m_{F}^{3} + \gamma_{\varphi} \sigma \,, \\ \beta_{m_{B}^{2}} &= \lambda m_{B}^{2} + \rho^{2} - 24 N_{F} g^{2} m_{F}^{2} + 2 \gamma_{\varphi} m_{B}^{2} \,, \\ \beta_{\rho} &= 3 \lambda \rho - 48 N_{F} g^{3} m_{F} + 3 \gamma_{\varphi} \rho \,, \\ \beta_{\lambda} &= 3 \lambda^{2} - 48 N_{F} g^{4} + 4 \gamma_{\varphi} \lambda \,. \end{split}$$

Can use this for higher dimension operators such as $(H^{\dagger}H)^3$ in SMEET.

Aneesh Manohar 23.03.2021 18/54

Shifted Lagrangian

Shifted parameters after $\varphi = \hat{\varphi} + \varphi_q$

$$\begin{split} \hat{m}_F &= m_F + g\hat{\varphi} \,, \\ \hat{g} &= g \,, \\ \hat{\Lambda} &= \Lambda + \sigma\hat{\varphi} + \frac{1}{2}m_B^2\hat{\varphi}^2 + \frac{1}{6}\rho\hat{\varphi}^3 + \frac{1}{24}\lambda\hat{\varphi}^4 \,, \\ \hat{\sigma} &= \sigma + m_B^2\hat{\varphi} + \frac{1}{2}\rho\hat{\varphi}^2 + \frac{1}{6}\lambda\hat{\varphi}^3 \,, \\ \hat{m}_B^2 &= m_B^2 + \rho\hat{\varphi} + \frac{1}{2}\lambda\hat{\varphi}^2 \,, \\ \hat{\rho} &= \rho + \lambda\hat{\varphi} \,, \\ \hat{\lambda} &= \lambda \end{split}$$

 β -functions for the hatted couplings are given by the same functions

$$\dot{\lambda}_i = \beta_i(\{\lambda_i\})$$
 $\dot{\hat{\lambda}}_i = \beta_i(\{\hat{\lambda}_i\})$

Aneesh Manohar 23.03.2021 19/54

Constraint on β -functions Shift invariance:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \phi \\ \psi \\ \lambda \\ \sigma \\ m_B^2 \\ \rho \\ \lambda \\ m_F \\ g \end{bmatrix} = c_1 \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} m_B^4 \\ m_B^2 \rho^2 \\ 3\lambda \rho \\ 3\lambda^2 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 0 \\ m_F^4 \\ 4g m_F^3 \\ 12 g^2 m_F^2 \\ 24 g^3 m_F \\ 24 g^4 \\ 0 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ g^2 m_F \\ g^3 \end{bmatrix} + C_3 \begin{bmatrix} \gamma_{\phi} \\ \gamma_{\psi} \\ 0 \\ \gamma_{\phi} \sigma \\ 2\gamma_{\phi} m_B^2 \\ 3\gamma_{\phi} \rho \\ 4\gamma_{\phi} \lambda \\ 2\gamma_{\psi} m_F \\ (\gamma_{\phi} + 2\gamma_{\psi}) g \end{bmatrix}$$

The β -functions are given in terms of $c_{1,2,3}$ and $\gamma_{\phi,\psi}$.

Strongly constrains the form of the β -functions

4D > 4A > 4B > 4B > B 900

20/54

RG Improvement

$$V = \begin{pmatrix} 1 & & & \\ \lambda L & \lambda & & \\ \lambda^2 L^2 & \lambda^2 L & \lambda^2 \\ \lambda^3 L^3 & \lambda^3 L^2 & \dots \\ \vdots & & & \end{pmatrix} \begin{array}{c} \text{tree} \\ \text{1-loop} \\ \text{2-loop} \\ \text{3-loop} \\ \end{array}$$

RG improvement sums the λL series because the β -functions being integrated do not contain logarithms.

We can check our method because the explicit two-loop results are known.

Aneesh Manohar 23.03.2021 21/54

LL series: tree-level matching and one-loop running LL + NLL series: one-loop matching and two-loop running

We will compute the boxed terms to compare with known results.

Requires in addition to the LL terms, the one-loop matching for V_{CW} .

The two-loop $(\lambda L)^2$ term is obtained by integrating one-loop results, and is a non-trivial check of the method

 V_{CW} is the cosmological constant after everything has been integrated out.

22/54

Example: Two Scalar Fields in the Broken Phase

Consider a theory with two scales

- χ_a the heavy field
- ϕ_a the light field
- $V_{\chi} \gg V_{\phi}$
- $z \ll 1 \sim v_{\phi}/v_{\chi}$ is the expansion parameter

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \chi)^2 + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\lambda_{\phi}}{24} (\phi^2 - v_{\phi}^2)^2 - \frac{\lambda_{\chi}}{24} (\chi^2 - v_{\chi}^2)^2 - \frac{\lambda_{3}}{4} (\phi^2 - v_{\phi}^2) (\chi^2 - v_{\chi}^2) - \Lambda ,$$

Compute $V(\hat{\chi}, \hat{\phi})$, where $\hat{\chi} = \langle \chi(\mu_0) \rangle$, etc.

Work to order z^4 .

4 D > 4 P > 4 E > 4 E > E 990

23/54

 $\langle \chi_q \rangle \stackrel{!}{=} 0$

Mass Hierarchy

$$\begin{split} W_{\chi\chi} &= \underbrace{\frac{1}{3} \lambda_{\chi} v_{\chi}^2}_{1} + \underbrace{\frac{1}{2} \lambda_{\chi} \left(\hat{\chi}^2 - v_{\chi}^2 \right) + \frac{1}{2} \lambda_{3} \left(\hat{\phi}^2 - v_{\phi}^2 \right)}_{z^2}, \\ W_{\phi\phi} &= \underbrace{\frac{1}{6} \lambda_{\phi} \left(3 \hat{\phi}^2 - v_{\phi}^2 \right) + \frac{1}{2} \lambda_{3} \left(\hat{\chi}^2 - v_{\chi}^2 \right)}_{z^2}, \\ W_{\phi\chi} &= W_{\chi\phi} = \underbrace{\lambda_{3} \hat{\phi} \hat{\chi}}_{z}. \end{split}$$

For a mass hierarchy:

$$\hat{\chi}^2 - v_\chi^2 \sim z^2 \,, \qquad \hat{\phi}^2 \sim v_\phi^2 \sim z^2 \,$$

so that

$$W_{\chi\chi} \sim 1$$
, $W_{\phi\phi} \sim z^2$, $W_{\phi\chi} = W_{\chi\phi} \sim z$.

The cosmological constant is

$$\hat{\Lambda} = \frac{\lambda_{\phi}}{24} (\hat{\phi}^2 - v_{\phi}^2)^2 + \frac{\lambda_{\chi}}{24} (\hat{\chi}^2 - v_{\chi}^2)^2 + \frac{\lambda_3}{4} (\hat{\phi}^2 - v_{\phi}^2) (\hat{\chi}^2 - v_{\chi}^2) + \Lambda.$$

in shifted theory.

Tree-level matching by integrating out χ_q using shifted Lagrangian with sources \mathcal{J}_{χ} and \mathcal{J}_{ϕ} :

Couplings in EFT after χ_q integrated out denoted $\widetilde{\lambda}$, etc.

EFT parameters depend on \mathcal{J}_{ϕ} and \mathcal{J}_{χ} .

4 D > 4 A > 4 B > 4 B > B 9 9 9

26/54

 X_1 is the linear term in χ_a

$$\hat{\mathcal{L}} \supset -X_1(\phi_q)\chi_q \qquad \quad X_1(\phi_q) = \lambda_3\hat{\chi}\hat{\phi}\phi_q + \frac{1}{2}\lambda_3\hat{\chi}\phi_q^2 - \mathcal{J}_\chi \; .$$

 $X_1 \sim z^2$.

Integrating out χ_q gives a quadratic term in the EFT

$$\mathcal{L}_{\mathsf{EFT}} \supset \frac{1}{2} X_1 \frac{1}{W_{\chi\chi} - \rho^2} X_1 = \underbrace{\frac{1}{2} X_1 \frac{1}{W_{\chi\chi}} X_1}_{z^4} + \underbrace{\frac{1}{2} X_1 \frac{\rho^2}{W_{\chi\chi}^2} X_1}_{z^6} + \dots$$

Aneesh Manohar 23.03.2021 27/54

Compute V_{CW} to order z^4 :

$$\begin{split} \widetilde{\lambda} &\stackrel{\mu=\mu_H}{=} \lambda_{\phi} - \frac{9\lambda_3^2\hat{\chi}^2}{\lambda_{\chi}v_{\chi}^2} + \mathcal{O}(z^2) \,, \\ \widetilde{\rho} &\stackrel{\mu=\mu_H}{=} \hat{\phi} \left[\lambda_{\phi} - \frac{9\lambda_3^2\hat{\chi}^2}{\lambda_{\chi}v_{\chi}^2} \right] + \mathcal{O}(z^3) = \widetilde{\lambda}\hat{\phi} + \mathcal{O}(z^3) \,, \\ \widetilde{m}^2 &\stackrel{\mu=\mu_H}{=} \frac{1}{6}\lambda_{\phi} \left(3\hat{\phi}^2 - v_{\phi}^2 \right) + \frac{1}{2}\lambda_3 \left(\hat{\chi}^2 - v_{\chi}^2 \right) - \frac{3\lambda_3^2\hat{\chi}^2\hat{\phi}^2}{\lambda_{\chi}v_{\chi}^2} + \frac{3\lambda_3\hat{\chi}}{\lambda_{\chi}v_{\chi}^2} + \mathcal{O}(z^4) \,, \\ &\equiv \widetilde{m}_{-}^2 + \frac{3\lambda_3\hat{\chi}}{\lambda_{\chi}v_{\chi}^2} + \mathcal{O}(z^4) \,, \\ \widetilde{\sigma} &\stackrel{\mu=\mu_H}{=} -\mathcal{J}_{\phi} + \frac{3\lambda_3\hat{\chi}\hat{\phi}}{\lambda_{\chi}v_{\chi}^2} + \mathcal{O}(z^5) \,, \end{split}$$

$$\widetilde{\Lambda} \stackrel{\mu=\mu_H}{=} \hat{\Lambda} + V_{\text{match}} - \frac{3\left(\mathcal{J}_{\chi}\right)^2}{2\lambda_{\chi}v_{\chi}^2} + \mathcal{O}(z^6) \,. \end{split}$$

EFT couplings depend on the sources
$$\mathcal{J}_{\chi}$$
 and \mathcal{J}_{ϕ} which have not yet been determined

Aneesh Manohar 23.03.2021

28/54

$V_{\rm match}$

	Graph	s	Integrand	V
1	$\chi($	1/2	$-\ln(p^2-W_{\chi\chi})$	$rac{1}{32\pi^2}W_{\chi\chi}^2\left[-rac{1}{2\epsilon}+rac{1}{2}\lnrac{W_{\chi\chi}}{\mu^2}-rac{3}{4} ight]$
z ²	x()	1/2	$rac{W_{\chi\phi}W_{\phi\chi}}{(ho^2-W_{\chi\chi}) ho^2}$	$rac{1}{32\pi^2} extbf{ extit{W}}_{\chi\phi} extbf{ extit{W}}_{\phi\chi} \left[-rac{1}{\epsilon} + \ln rac{ extbf{ extit{W}}_{\chi\chi}}{\mu^2} - 1 ight]$
Z^4	x()	1/2	$\frac{W_{\chi\phi}W_{\phi\chi}}{(\rho^2 - W_{\chi\chi})\rho^2} \frac{W_{\phi\phi}}{\rho^2}$	$\frac{1}{32\pi^2} \frac{W_{\chi\phi}W_{\phi\chi}W_{\phi\phi}}{W_{\chi\chi}} \left[-\frac{1}{\epsilon} + \ln \frac{W_{\chi\chi}}{\mu^2} - 1 \right]$
z^4	χ, • φ • χ	1/4	$rac{W_{\chi\phi}^2W_{\phi\chi}^2}{(ho^2-W_{\chi\chi})^2 ho^4}$	$\frac{1}{32\pi^2} \frac{W_{\chi\phi}^2 W_{\phi\chi}^2}{W_{\chi\chi}^2} \left[\frac{1}{2\epsilon} - \frac{1}{2} \ln \frac{W_{\chi\chi}}{\mu^2} + 1 \right]$

Full theory graphs expanded in the low scale, i.e. in *z*

$$\begin{split} V_{\text{match}}(\mu_H) &= \frac{1}{64\pi^2} \Biggl\{ \left[\ln \frac{W_{\chi\chi}}{\mu_H^2} - \frac{3}{2} \right] W_{\chi\chi}^2 + \left[\ln \frac{W_{\chi\chi}}{\mu_H^2} - 1 \right] 2 W_{\chi\phi} W_{\phi\chi} \\ &+ \left[\ln \frac{W_{\chi\chi}}{\mu_H^2} - 1 \right] \frac{2 W_{\chi\phi} W_{\phi\chi} W_{\phi\phi}}{W_{\chi\chi}} - \left[\ln \frac{W_{\chi\chi}}{\mu_H^2} - 2 \right] \frac{W_{\chi\phi}^2 W_{\phi\chi}^2}{W_{\chi\chi}^2} \Biggr\}, \end{split}$$

where the first term is order 1, the second term is order z^2 , and the last two terms are order z^4 .

Run the EFT Lagrangian down from μ_H to μ_L using the EFT β -functions.

Compute Coleman-Weinberg potential at μ_L (or equivalently, integrate out ϕ_q at μ_L):

$$V_{\mathrm{CW}} = \widetilde{\Lambda}(\mu_L) + rac{1}{64\pi^2}\widetilde{m}^4(\mu_L) \left[\ln rac{\widetilde{m}^2(\mu_L)}{\mu_L^2} - rac{3}{2}
ight] \; ,$$

 4 □ ▶ 4 □ № 4 □

RG Evolution

$$V(\varphi) = \Lambda + \sigma\varphi + \frac{m^2}{2}\varphi^2 + \frac{\rho}{6}\varphi^3 + \frac{\lambda}{24}\varphi^4$$

$$\begin{split} \gamma_{\varphi} &= 0 \,, & \beta_{\Lambda} &= \frac{1}{2} m^4 \,, & \beta_{\sigma} &= m^2 \rho \,, \\ \beta_{m^2} &= \lambda m^2 + \rho^2 \,, & \beta_{\rho} &= 3 \lambda \rho \,, & \beta_{\lambda} &= 3 \lambda^2 \,, \end{split}$$

with solution

$$\begin{split} &\lambda(\mu) = \lambda(\mu_0) \; \eta^{-1} \;, \\ &\rho(\mu) = \rho(\mu_0) \; \eta^{-1} \;, \\ &m^2(\mu) = m^2(\mu_0) \left\{ \eta^{-1/3} \left[1 - \frac{1}{2} \xi \right] + \frac{1}{2} \xi \eta^{-1} \right\} \;, \\ &\sigma(\mu) = \sigma(\mu_0) + \frac{m^2(\mu_0) \rho(\mu_0)}{\lambda(\mu_0)} \left\{ \left(\frac{1}{3} \xi - 1 \right) + \frac{1}{6} \xi \eta^{-1} + \left(1 - \frac{1}{2} \xi \right) \eta^{-1/3} \right\} \;, \\ &\Lambda(\mu) = \Lambda(\mu_0) + \frac{m^4(\mu_0)}{2\lambda(\mu_0)} \left\{ \frac{1}{3} \left(3 - 6 \xi + 2 \xi^2 \right) - \frac{1}{2} \xi \left(\xi - 2 \right) \eta^{-1/3} - \frac{1}{4} \left(\xi - 2 \right)^2 \eta^{1/3} + \frac{1}{12} \xi^2 \eta^{-1} \right\} \;, \end{split}$$

where

$$t = \frac{1}{16\pi^2} \ln \frac{\mu}{\mu_0} \,, \qquad \eta = 1 - 3\lambda(\mu_0)t \,, \qquad \xi = \frac{\rho^2(\mu_0)}{\lambda(\mu_0)m^2(\mu_0)} \,.$$

Aneesh Manohar 23.03.2021 31/54

Tadpole Condition Fix \mathcal{J}_{χ} and \mathcal{J}_{ϕ} by

$$\langle \chi_q(\mu_0) \rangle = 0$$
 $\langle \phi_q(\mu_0) \rangle = 0$

We are in the EFT where χ_q has been integrated out. But we started with

$$\int \mathcal{D}\chi_{q} \; \mathcal{D}\phi_{q} \; e^{i\left[S+\int \mathcal{J}_{\chi}\chi_{q}+\mathcal{J}_{\phi}\phi_{q}
ight]}$$

$$\frac{\delta}{\delta \mathcal{J}_{\chi}} \implies \langle \chi_{q} \rangle$$

and we have computed the EFT keeping $\mathcal{J}_{\chi},\,\mathcal{J}_{\phi},$

$$0 = rac{\delta}{\delta \mathcal{J}_{\chi}} \, \int \mathcal{D} \phi_{m{q}} \; m{e}^{i \mathcal{S}_{ extit{EFT}}} \implies \langle \chi_{m{q}}
angle = 0$$

Aneesh Manohar 23.03.2021 32/54

χ_q tadpole in EFT

We can compute the tadpole of the heavy field using the EFT

$$\chi_{q}(\mu_{H}) \rightarrow -\frac{\lambda_{3}(\mu_{H})\hat{\chi}}{2m_{\chi}^{2}(\mu_{H})} \left[\phi_{q}^{2}\right]_{\mu_{H}} - \frac{\lambda_{3}(\mu_{H})\hat{\chi}\hat{\phi}}{m_{\chi}^{2}(\mu_{H})} \phi_{q}(\mu_{H}) + \frac{\mathcal{J}_{\chi}(\mu_{H})}{m_{\chi}^{2}(\mu_{H})} ,$$

and the tadpole condition becomes

$$\mathcal{J}_{\chi}(\mu_{H}) = \frac{1}{2} \lambda_{3}(\mu_{H}) \hat{\chi} \left\langle \left[\phi_{q}^{2} \right] \right\rangle_{\mu_{H}}$$

since $\langle \phi_q \rangle = 0$.

|ロ ト 4 回 ト 4 差 ト 4 差 ト | 差 | 夕 Q ()

Aneesh Manohar 23.03.2021 33/54

RG Improve the Tadpole

Need to compute the RG improved tadpole. $\left[\phi_q^2\right]_{\mu_L}$ has no large logarithms since $\mu_L\sim m_\phi$.

$$\left\langle \left[\phi_q^2\right]\right\rangle_{\mu} = \frac{1}{16\pi^2}\;\widetilde{m}^2\left[\ln\frac{\widetilde{m}^2}{\mu^2} - 1\right]\;,$$

RG equations in the EFT relate $\left[\phi_q^2\right]_{\mu_L}$ and $\left[\phi_q^2\right]_{\mu_H}$ by integrating operator anomalous dimension

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\phi_q^2 \right] = -\widetilde{\lambda} \left[\phi_q^2 \right] - 2\widetilde{\rho} \, \phi_q - 2\widetilde{m}^2 \; ,$$

This gives the RG improved tadpole

Aneesh Manohar 23.03.2021 34/54

The result is the RG-improved Coleman-Weinberg effective potential, given by substituting the RG improved tadpole into the formula for $\tilde{\Lambda}(\mu_L)$.

The explicit form is complicated because the solution of the RG equations is complicated.

Need the full EFT Lagrangian, not just $\widetilde{\Lambda}$ because the running of $\widetilde{\Lambda}$ depends on all the couplings

Expand and identify the LL terms to compare with existing calculations

Expand in

$$t = \frac{1}{16\pi^2} \ln \frac{\mu_L}{\mu_H}$$

Aneesh Manohar 23.03.2021 35/54

Expansion in t

RG evolution of the cosmological constant:

$$\widetilde{\Lambda}(\mu_L) = \widetilde{\Lambda}(\mu_H) + \frac{1}{2}\widetilde{m}^4(\mu_H)t + \frac{1}{2}\widetilde{m}^2(\mu_H)\left[\widetilde{\lambda}(\mu_H)\widetilde{m}^2(\mu_H) + \widehat{\rho}^2(\mu_H)\right]t^2 + \dots$$

Rewriting \widetilde{m}^2 in terms of \widetilde{m}_-^2 and $\mathcal{J}_\chi(\mu_H)$ using the matching condition:

$$\begin{split} \widetilde{m}^2 &= \underbrace{\frac{1}{6} \lambda_{\phi} \left(3 \hat{\phi}^2 - v_{\phi}^2 \right) + \frac{1}{2} \lambda_3 \left(\hat{\chi}^2 - v_{\chi}^2 \right) - \frac{\lambda_3^2 \hat{\chi}^2 \hat{\phi}^2}{m_{\chi}^2}}_{\widetilde{m}_{\chi}^2} + \frac{\lambda_3 \hat{\chi} \mathcal{J}_{\chi}}{m_{\chi}^2} \\ &\equiv \widetilde{m}_{-}^2 + \frac{\lambda_3 \hat{\chi} \mathcal{J}_{\chi}}{m_{\chi}^2} \end{split}$$

and using the matching condition for A:

$$\widetilde{\Lambda}(\mu_H) = \hat{\Lambda} + V_{\mathsf{match}} - \frac{(\mathcal{J}_\chi)^2}{2m_\chi^2} + \mathcal{O}(z^6).$$

Aneesh Manohar 23.03.2021 36/54

Expand in t

Logarithmic terms:

$$\widetilde{\Lambda}(\mu_{L}) = \frac{1}{2} \widetilde{m}_{-}^{4}(\mu_{H})t + \frac{1}{2} \widetilde{m}_{-}^{2}(\mu_{H}) \left[\widetilde{\lambda}(\mu_{H}) \widetilde{m}_{-}^{2}(\mu_{H}) + \widetilde{\rho}^{2}(\mu_{H}) \right] t^{2} \\
+ \underbrace{\frac{\widetilde{m}_{-}^{2}(\mu_{H})\lambda_{3}(\mu_{H})\hat{\chi}}{m_{\chi}^{2}(\mu_{H})}}_{t^{2}} \mathcal{J}_{\chi}(\mu_{H})t - \underbrace{\frac{(\mathcal{J}_{\chi}(\mu_{H}))^{2}}{2m_{\chi}^{2}(\mu_{H})}}_{t^{2}} + \dots$$

LL Tadpole:

$$\mathcal{J}_{\chi}(\mu_H) \approx \underbrace{\lambda_3(\mu_H)\hat{\chi} \ \widetilde{m}_{-}^2(\mu_H)t}_{t} \ .$$

(remember \mathcal{J} is one-loop, so starts at order t)

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (C)

37/54

$$\widetilde{\lambda} = \lambda_{\phi} - 3 \frac{\lambda_3^2 \hat{\chi}^2}{m_{\chi}^2}$$
 $\widetilde{\rho} = \widetilde{\lambda} \hat{\phi}$

$$\begin{split} \widetilde{\Lambda}(\mu_L) &= \frac{1}{2} \widetilde{m}_{-}^4(\mu_H) t + \frac{1}{2} \left\{ \left[\lambda_{\phi} - 3 \frac{\lambda_3^2 \hat{\chi}^2}{m_{\chi}^2} \right] \widetilde{m}_{-}^4 + \left[\lambda_{\phi} - 3 \frac{\lambda_3^2 \hat{\chi}^2}{m_{\chi}^2} \right]^2 \hat{\phi}^2 \widetilde{m}_{-}^2 + \frac{\lambda_3^2 \hat{\chi}^2}{m_{\chi}^2} \widetilde{m}_{-}^4 \right\} t^2 \\ &= \frac{1}{2} \widetilde{m}_{-}^4(\mu_H) t + \frac{1}{2} \left\{ \left[\lambda_{\phi} - 2 \frac{\lambda_3^2 \hat{\chi}^2}{m_{\chi}^2} \right] \widetilde{m}_{-}^4 + \left[\lambda_{\phi} - 3 \frac{\lambda_3^2 \hat{\chi}^2}{m_{\chi}^2} \right]^2 \hat{\phi}^2 \widetilde{m}_{-}^2 \right\} t^2 \,. \end{split}$$

The t^2 term is multiplied by 2/3.

- C. Ford and D. Jones, PLB274 (1992) 409
- C. Ford, I. Jack, and D. Jones, NPB387 (1992) 373
- S. Martin, PRD65 (2002) 116003

(ロ) (回) (巨) (巨) (三) (2)

Aneesh Manohar 23.03.2021 38/54

Fixed Order Result

in terms of mass eigenstates

$$V = V^{(0)} + \frac{1}{16\pi^2}V^{(1)} + \frac{1}{(16\pi^2)^2}V^{(2)} + \dots$$

$$V^{(1)} = \frac{1}{4} \sum_{r} m_r^4 \left(\ln \frac{m_r^2}{\mu^2} - \frac{3}{2} \right)$$

$$V^{(2)} = \frac{1}{12} \lambda_{ijk} \lambda_{ijk} f_{SSS}(m_i^2, m_j^2, m_k^2) + \frac{1}{8} \lambda_{iijj} f_{SS}(m_i^2, m_j^2)$$

$$\lambda_{ijk} = \frac{\partial^3 V}{\partial \phi_i \partial \phi_j \partial \phi_k} \qquad \qquad \lambda_{ijkr} = \frac{\partial^4 V}{\partial \phi_i \partial \phi_j \partial \phi_k \partial \phi_r}$$

Aneesh Manohar 23.03.2021 39/54

Fixed Order Result

$$\mathit{f}_{SS}(\mathit{m}_{1}^{2},\mathit{m}_{2}^{2}) = \left[\mathit{m}_{1}^{2} \left(\ln \frac{\mathit{m}_{1}^{2}}{\mathit{\mu}^{2}} - 1 \right) \right] \left[\mathit{m}_{2}^{2} \left(\ln \frac{\mathit{m}_{2}^{2}}{\mathit{\mu}^{2}} - 1 \right) \right] \,.$$

$$\begin{split} f_{\rm SSS}(m_1^2,m_1^2,m_2^2) &= -\frac{\Delta+2}{2} m_1^2 \Big\{ -5 + \frac{2\Delta \ln \Delta}{\Delta+2} \left[2 - \ln \frac{m_1^2}{\mu^2} \right] + 4 \ln \frac{m_1^2}{\mu^2} \\ &- \ln^2 \frac{m_1^2}{\mu^2} - 8\Omega(\Delta) \Big\} \,, \end{split}$$

which is given in terms of $\Delta \equiv m_2^2/m_1^2$.

40/54

Fixed Order Result

$$\Omega(\Delta) = rac{\sqrt{\Delta(\Delta-4)}}{\Delta+2} \int_0^lpha \ln(2\cosh x) \; \mathrm{d}x \; , \qquad \coshlpha = rac{1}{2}\sqrt{\Delta} \, ,$$

for $\Delta \geq 4$, and by

$$\Omega(\Delta) = rac{\sqrt{\Delta(4-\Delta)}}{\Delta+2} \int_0^{ heta} \ln(2\sin x) \; \mathrm{d}x \;, \qquad \sin heta = rac{1}{2} \sqrt{\Delta} \,,$$

Aneesh Manohar 23.03.2021 41/54

Numerics

$$\frac{\lambda_\phi}{16\pi^2} = 0.1 \ , \qquad \frac{\lambda_\chi}{16\pi^2} = 0.25 \ , \qquad \frac{\lambda_3}{16\pi^2} = 0.04 \ ,$$

at the scale μ_H and

$$\emph{v}_{\phi} = \mathsf{246\,GeV}\,, \qquad \emph{v}_{\chi} = \mathsf{500\,TeV}\,,$$

 $V_{\text{tree}} \sim 10^9 \, \text{GeV}^4$

Aneesh Manohar

42/54

$$\begin{split} V_{\text{match}}(\mu_{H}) &= \frac{1}{64\pi^{2}} \bigg\{ \\ & \left[\ln \frac{W_{\chi\chi}^{(0)}}{\mu_{H}^{2}} - \frac{3}{2} \right] \left[W_{\chi\chi}^{(0)} \right]^{2} \\ & + \left[\ln \frac{W_{\chi\chi}^{(0)}}{\mu_{H}^{2}} - 1 \right] 2 W_{\chi\chi}^{(0)} W_{\chi\chi}^{(2)} \\ & + \left[\ln \frac{W_{\chi\chi}^{(0)}}{\mu_{H}^{2}} \right] \left[W_{\chi\chi}^{(2)} \right]^{2} \\ & + 0 \\ & + \left[\ln \frac{W_{\chi\chi}^{(0)}}{\mu_{H}^{2}} - 1 \right] 2 W_{\phi\chi} W_{\chi\phi} \\ & + \frac{2 W_{\phi\chi} W_{\chi\phi} W_{\chi\chi}^{(2)}}{W_{\chi\chi}^{(0)}} \\ & + 0 \\ & + 0 \\ & + \left[\ln \frac{W_{\chi\chi}^{(0)}}{\mu_{H}^{2}} - 1 \right] \frac{2 W_{\phi\chi} W_{\chi\phi} W_{\phi\phi}}{W_{\chi\chi}^{(0)}} \\ & + 0 \\ & + 0 \\ & - \left[\ln \frac{W_{\chi\chi}^{(0)}}{\mu_{H}^{2}} - 2 \right] \left(\frac{W_{\phi\chi} W_{\chi\phi}}{W_{\chi\chi}^{(0)}} \right)^{2} \bigg\} \end{split}$$

The order 1 term gives a constant shift of $\simeq -2.6 \times 10^{22} \, \text{GeV}^4$, about 13 orders of magnitude larger than the tree-level contribution.

Aneesh Manohar 23.03.2021 43/54

z^2 terms

The order z^2 contributions. The blue and orange curves are from the first and second rows. The two values happen to be nearly equal for our particular choice of input parameters.

$$V \simeq \times 10^{15}\, \text{GeV}^4$$

44/54

z^4 terms

The tree-level potential and the order z^4 contributions The blue curve is the tree-level potential, and the orange, green, red and purple curves are the z^4 terms in the four rows

4□ > 4□ > 4 = > 4 = > = 900

45/54

The instability is related to the cosmological constant and hierarchy problem.

Need to make sure the low-energy particle ϕ remains light.

A simple solution is to match at the scale

$$\mu_H^2 = \frac{1}{e} W_{\chi\chi}^{(0)}$$

Aneesh Manohar 23.03.2021 46/54

One-loop Matching for V_{CW}

$$V_{ ext{match}}(\mu_H) = rac{1}{64\pi^2} \left\{ egin{array}{lll} -rac{1}{2} \left[W_{\chi\chi}^{(0)}
ight]^2 & +0 & + \left[W_{\chi\chi}^{(2)}
ight]^2 \ & +0 & +0 & +rac{2W_{\phi\chi}W_{\chi\phi}W_{\chi\chi}^{(2)}}{W_{\chi\chi}^{(0)}} \ & +0 & +0 & +0 \ & +0 & +0 & +\left(rac{W_{\phi\chi}W_{\chi\phi}}{W_{\chi\chi}^{(0)}}
ight)^2 \ & 1 & z^2 & z^4 \ \end{array}
ight\} \,.$$

There are no z^2 corrections. Radiative corrections to V_{CW} are under control.

A large shift in the cosmological constant remains (independent of $\hat{\chi}$ and $\hat{\phi}$)

RG improved V_{CW}

blue: tree-level potential

orange: fixed order potential at one-loop

green: RG improved potential neglecting the tadpole

red: RG improved potential

 $\hat{\chi}$ equal to its value at the minimum.

48/54

Previous Work

- O(N) model
- two scalar fields in the unbroken phase
- two scalar fields in the broken phase
- Higgs-Yukawa model with $m_F \gg m_B$ or $m_B \gg m_F$

In all cases our results agree with explicit two-loop calculations.

Higgs-Yukawa model:

Aneesh Manohar

J. Casas, V. Di Clemente, M. Quiros, NPB553 (1993) 405,

M. Bando, T. Kugo, N. Maekawa, and H. Nakano, Prog. Theo. Phys. 90 (1993) 405

$$\begin{split} \dot{\phi} &= -2g^2N\theta_F\phi = -\gamma_\phi\theta_F\phi \,,\\ \dot{g} &= 3\theta_B\theta_Fg^3 + \gamma_\phi\theta_Fg \,,\\ \dot{m}_B^2 &= \lambda m_B^2\theta_B + 2\gamma_\phi\theta_Fm_B^2 \,,\\ \dot{\lambda} &= 3\lambda^2\theta_B - 48g^4N\theta_F + 4\gamma_\phi\theta_F\lambda \,,\\ \dot{\Lambda} &= \frac{1}{2}m_B^4\theta_B \,. \end{split}$$

23.03.2021

49/54

Goldstone Boson IR Divergence Problem

- S. P. Martin, PRD89 (2014) 013003, S. P. Martin, PRD90 (2014) 016013,
- J. Elias-Miro, J. Espinosa, and T. Konstandin, JHEP 08 (2014) 034

top quarks and φ^+ and φ_Z , which are propagating degrees of freedom in R_ξ gauge.

IR divergence in the SM model at three-loops and beyond

4 D > 4 P > 4 E > 4 E > E 9 Q P

50/54

$$\Sigma_{arphiarphi}(arphi^2) = -rac{y^2}{8\pi^2} m_F^2 \lnrac{m_F^2}{\mu^2}$$

to the φ mass. At ℓ loop order — i.e. with $\ell-1$ fermion loops, get

$$V \sim (y^2)^{\ell-1} \left(m_F^2
ight)^{\ell-1} W_{\varphi\varphi}^{3-\ell} \left[\ln rac{W_{\varphi\varphi}}{m_F^2} + \ldots
ight] \,,$$

and leads to an infrared divergence as $W_{\varphi\varphi} \to 0$ for $I \ge 3$ loops. This is the Goldstone boson infrared divergence problem.

Expansion in m_F^2/m_{φ}^2

EFT says to use the one-loop corrected mass

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

51/54

One-loop contributions to the φ two-point function. The dotted lines are φ , the dashed lines are h_q and the solid line is the fermion ψ . $\Gamma[\hat{\varphi}]$ includes some 1PI graphs

Aneesh Manohar

$$\begin{split} \Sigma_{\varphi\varphi}(\rho^2) &= \frac{1}{16\pi^2} \bigg\{ -\lambda \overline{A}_0(W_{hh}) - 4\lambda^2 \hat{h}^2 \overline{B}_0(0, W_{hh}, 0) + 2y^2 \overline{A}_0(m_F^2) \bigg\} \\ &+ \frac{1}{16\pi^2} \left[\frac{6\lambda^2 \hat{h}^2}{W_{hh}} \overline{A}_0(W_{hh}) - 4\sqrt{2} \frac{\lambda \hat{h}}{W_{hh}} y m_F \overline{A}_0(m_F^2) \right] + \frac{2\lambda \hat{h} \mathcal{J}_h}{W_{hh}} + \mathcal{O}\left(z^2\right) \,, \end{split}$$

$$\Sigma_{\varphi\varphi}(p^2=0)=rac{\mathcal{J}_h}{V}$$
.

$$i \Gamma_{\varphi\varphi}(0) = W_{\varphi\varphi} + \Sigma_{\varphi\varphi}(p^2 = 0) = \frac{\hat{\sigma}}{v} + \frac{\mathcal{J}_h}{v} = \frac{J}{v}.$$

Consequently, at the minimum of the potential where J=0, at one-loop order

$$\Gamma_{\varphi\varphi}(p=0)=0$$
,

Aneesh Manohar 23.03.2021 53/54

Conclusions

- Formalism to systematically improve the CW potential
- The $(\lambda L)^2$ agrees with existing two-loop fixed order calculations
- The formalism applies also to
 - gauge case
 - higher orders

without change

54/54