Neutrinoless double beta decay in effective field theory

Wouter Dekens

with

T. Tong, M. Hoferichter, G. Zhou, K. Fuyuto, V. Cirigliano, J. de Vries, M.L. Graesser, E. Mereghetti, M. Piarulli, S. Pastore, U. van Kolck, A. Walker-Loud, R.B. Wiringa

Introduction

• Violates lepton number, $\Delta L=2$

Introduction

Introduction

Schechter, Valle, `82

Introduction

Introduction

Well-known Majorana mass mechanism

Introduction

Well-known Majorana mass mechanism

•

Heavy BSM mechanisms

- Many possible scenarios
 - Left-right model,
 - R-parity violating SUSY
 - Leptoquarks...

Introduction

Well-known Majorana mass mechanism

Implications for the mass hierarchy

Heavy BSM mechanisms

- Many possible scenarios
 - Left-right model,
 - R-parity violating SUSY
 - Leptoquarks...
- How to describe all LNV sources systematically?

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
	 12 ΔL=2 operators 	 Consider subset of operators
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	$\begin{array}{c c} 1: \psi^2 H^4 + \text{h.c.} \\ \hline \mathcal{O}_{LH} & \epsilon_{ij} \epsilon_{mn} (L^i C L^m) H^j H^n (H^{\dagger} H) \\ \hline 3: \psi^2 H^3 D + \text{h.c.} \\ \hline \mathcal{O}_{LHDe} & \epsilon_{ij} \epsilon_{mn} (L^i C \gamma_\mu e) H^j H^m D^\mu H^n \\ \hline 5: \psi^4 D + \text{h.c.} \\ \hline \mathcal{O}_{LL\bar{d}uD} & \epsilon_{ij} (\bar{d}\gamma_\mu u) (L^i C D^\mu L^j) \\ \mathcal{O}_{L\bar{L}\bar{d}uD}^{(2)} & \epsilon_{ij} (\bar{d}\gamma_\mu u) (L^i C \sigma^{\mu\nu} D_\nu L^j) \\ \mathcal{O}_{LQdD}^{(1)} & (Q C \gamma_\mu d) (\bar{L} D^\mu d) \\ \mathcal{O}_{LQdD}^{(2)} & (\bar{L}\gamma_\mu Q) (d C D^\mu d) \\ \mathcal{O}_{dd\bar{e}D} & (\bar{e}\gamma_\mu d) (d C D^\mu d) \\ \hline \end{array}$	$\begin{split} \mathrm{LM1} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM2} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM3} &= (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM4} &= (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM5} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM6} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM7} &= (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C})\\ \mathrm{LM8} &= (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM9} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM10} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM10} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM12} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM12} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM13} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM14} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM14} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM14} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{R}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM14} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\gamma^{A}Q_{a})(\overline{\ell}_{R}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM14} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\gamma^{A}Q_{a})(\overline{\ell}_{R}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM14} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\gamma^{A}Q_{R})(\overline{u}_{R}\gamma^{A}Q_{R$

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	 12 ΔL=2 operators 	• Consider subset of operators
	$\frac{1: \psi^{2}H^{4} + h.c.}{\mathcal{O}_{LH} \epsilon_{ij}\epsilon_{mn}(L^{i}CL^{m})H^{j}H^{n}(H^{\dagger}H)}$ $\frac{3: \psi^{2}H^{3}D + h.c.}{\mathcal{O}_{LHDe} \epsilon_{ij}\epsilon_{mn}(L^{i}C\gamma_{\mu}e)H^{j}H^{m}D^{\mu}H^{n}}$ $\frac{3: \psi^{2}H^{3}D + h.c.}{\mathcal{O}_{LHDe} \epsilon_{ij}\epsilon_{mn}(L^{i}C\gamma_{\mu}e)H^{j}H^{m}D^{\mu}H^{n}}$ $\frac{5: \psi^{4}D + h.c.}{\mathcal{O}_{LL\overline{d}uD} c_{ij}(\overline{d}\gamma_{\mu}u)(L^{i}CD^{\mu}L^{j})}$ $\frac{6ij(\overline{d}\gamma_{\mu}u)(L^{i}CD^{\mu}L^{j})}{(L\overline{d}\muD} c_{ij}(\overline{d}\gamma_{\mu}u)(L^{i}CD^{\mu}L^{j})}$ $\frac{6ij(\overline{d}\gamma_{\mu}u)(L^{i}C\sigma^{\mu\nu}D_{\nu}L^{j})}{(QC\gamma_{\mu}d)(\overline{L}D\mud)} (QC\gamma_{\mu}d)(\overline{L}D\mud) (\overline{c}\gamma_{\mu}Q)(dCD^{\mu}d)}$ $\frac{6i}{C}(\overline{d}\gamma_{\mu}d)(dCD^{\mu}d) (\overline{c}\gamma_{\mu}d)(dCD^{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d)(\overline{c}\gamma_{\mu}d) (\overline{c}\gamma_{\mu}d) $	$\begin{split} \mathrm{LM1} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM2} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM3} &= (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM4} &= (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM5} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM6} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM7} &= (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C})\\ \mathrm{LM8} &= (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM9} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM10} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C}) \end{split}$
		• Recently complete basis Liao and Ma '20; Li et al '20;

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
	 12 ΔL=2 operators 	• Consider subset of operators
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	$rac{1:\psi^2 H^4 + ext{h.c.}}{\mathcal{O}_{LH} \mid \epsilon_{ij}\epsilon_{mn}(L^iCL^m)H^jH^n(H^\dagger H)}$	$\begin{split} \mathrm{LM1} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM2} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM3} &= (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM4} &= (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM5} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM6} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM7} &= (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C})\\ \mathrm{LM8} &= (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM9} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM10} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C}) \end{split}$
	$\frac{3:\psi^2 H^3 D + \text{h.c.}}{\mathcal{O}_{LHDe} \mid \epsilon_{ij}\epsilon_{mn} \left(L^i C \gamma_\mu e\right) H^j H^m D^\mu H^n}$	
	$ \begin{array}{c c} & \mathcal{S}: \psi^{-}D + \text{h.c.} \\ \hline \mathcal{O}_{LL\overline{d}uD}^{(1)} & \epsilon_{ij}(\overline{d}\gamma_{\mu}u)(L^{i}CD^{\mu}L^{j}) \\ \mathcal{O}_{LL\overline{d}uD}^{(2)} & \epsilon_{ij}(\overline{d}\gamma_{\mu}u)(L^{i}C\sigma^{\mu\nu}D_{\nu}L^{j}) \\ \mathcal{O}_{\overline{L}QddD}^{(1)} & (QC\gamma_{\mu}d)(\overline{L}D^{\mu}d) \\ \end{array} $	
	$ \begin{array}{ c c c } \mathcal{O}_{\overline{L}QddD}^{(2)} & (L\gamma_{\mu}Q)(dCD^{\mu}d) \\ \mathcal{O}_{ddd\overline{e}D} & (\overline{e}\gamma_{\mu}d)(dCD^{\mu}d) \end{array} $	• Recently complete basis Liao and Ma '20; Li et al '20;

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16;

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda}\right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda}\right)^4 \frac{c_9}{c_5} \right]$$

• $v/\Lambda \ll 1$ So why keep dimension 7 & 9?

So why keep dimension 7 & 9?

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda}\right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda}\right)^4 \frac{c_9}{c_5} \right]$$

 $\bullet v/\Lambda \ll 1$

Naive scaling of Dimension 5, 7, 9 operators

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda} \right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda} \right)^4 \frac{c_9}{c_5} \right]$$

So why keep dimension 7 & 9?

$$m_
u \sim c_5 v^2 / \Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

 $\sqrt{v/\Lambda} \ll$

• Relative enhancement of higher-dimensional terms due to $(c_{7,9}/c_5\gg 1)$

• Happens, for example, in the left-right model

Naive scaling of Dimension 5, 7, 9 operators

 $\sqrt{v/\Lambda} \ll$

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \underbrace{\begin{pmatrix} v \\ \Lambda \end{pmatrix}}_{c_5}^{2} \underbrace{\begin{pmatrix} v \\ c_7 \\ c_5 \end{pmatrix}}_{c_5}^{4} + \underbrace{\begin{pmatrix} v \\ \Lambda \end{pmatrix}}_{c_5}^{4} \underbrace{\begin{pmatrix} v \\ c_9 \\ c_5 \end{pmatrix}}_{c_5}^{4} \right] \right]$$

So why keep dimension 7 & 9?

$$m_
u \sim c_5 v^2/\Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to $(c_{7,9}/c_5\gg 1)$

- Happens, for example, in the left-right model
- However, if c₅ = O(1), Λ = 10¹⁵ GeV
 dimension-7, -9 irrelevant in this case

Running/matching at the weak scale

• Mismatch in dimensions due to insertions of the Higgs vacuum expectation value

Induced by dimension-5 SU(2)-invariant operator

$$m_{\beta\beta} \sim v^2 / \Lambda$$

 $\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left\{ C_{\mathrm{VL},ij}^{(7)} \,\bar{u}_L \gamma^{\mu} d_L \,\bar{e}_{L,i} \,C \,i \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T + C_{\mathrm{VR},ij}^{(7)} \,\bar{u}_R \gamma^{\mu} d_R \,\bar{e}_{L,i} \,C \,i \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T \right\} + \mathrm{h.c.}$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \,\bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \,\bar{e}_L C \bar{e}_L^T \right) O_i + C_i^{(9)} \bar{e}\gamma_\mu \gamma_5 C \bar{e}^T O_i^\mu \right],$$

• 3 can be induced by dimension-7 operators $C_i^{(9)} \sim v^3 / \Lambda^3$ • 19 can be induced by dimension-9 operators $C_i^{(9)} \sim v^5 / \Lambda^5$

Low-energy operators Summary

Low-energy operators Summary

Low-energy operators Summary

Matching to Chiral EFT

Warning: Based on NDA

Matching to Chiral EFT

Dimension-3

Warning: Based on NDA

Matching to Chiral EFT

Dimension-3

Warning: Based on NDA

Matching to Chiral EFT

Dimension-3

- At LO in Weinberg counting, only need the nucleon one-body currents
- Needed low-energy constants are known from experiment / Lattice QCD

W. Dekens, Vienna, 13/04/21

Chiral EFT

W. Dekens, Vienna, 13/04/21

Chiral EFT

New Low-energy constants

Chiral EFT

Chiral EFT

Kaplan, Savage, Wise, '96; Beane, Bedaque, Savage, van Kolck, '03, Nogga, Timmermans, van Kolck, '05, Long, Yang, '12;

Dimension-3

Check that $\mathcal{A}(nn \rightarrow ppee)$ is finite

W. Dekens, Vienna, 13/04/21

Dimension-3

Dimension-3

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

Dimension-3

Dimension-3

Dimension-3

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

In MS-bar:

$$n \longrightarrow e^{p} = -\left(\frac{m_N}{4\pi}\right)^2 \left(1 + 2g_A^2\right) \frac{1}{2} \left(\log \frac{\mu^2}{-(|\mathbf{p}| + |\mathbf{p}'|)^2 + i0^+} + 1\right)$$

$$+\text{finite}$$
Regulator dependent

Numerical results

Need for a counter term

• Need a new contact interaction at leading order to get physical amplitudes:

Need for a counter term

• Need a new contact interaction at leading order to get physical amplitudes:

• Finite part of g_{ν}^{NN} is currently unknown, hard to estimate its impact

- Could be determined from a lattice calculation of $\mathcal{A}(nn \to ppe^-e^-)$
 - Area of active research Davoudi and Kadam, '20; Feng et al, '20
- Estimate from relation to EM (back-up slides)
 - ~10-30% contribution in $\mathcal{A}(nn \to ppe^-e^-)$
 - ~60% in light nuclei, ${}^{12}\text{Be} \rightarrow {}^{12}\text{C}e^-e^-$

Determination of the counterterm

Analogy to the Cottingham approach for pion/nucleon mass differences

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\} | nn \rangle$$

- Compute the $0\nu\beta\beta$ amplitude by constraining the correlator

Cirigliano et al, '20, '21

W. Cottingham '63; H. Harari, '66

Determination of the counterterm

Analogy to the Cottingham approach for pion/nucleon mass differences

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\} | nn \rangle$$

- Compute the $0 \nu \beta \beta$ amplitude by constraining the correlator

- . $k \ll \Lambda_{\chi}$ region determined by $\chi {\rm PT}$
- $k \gg \text{GeV}$ region determined by OPE
- Model intermediate region using:
 - Form factors
 - Off-shell effects from NN intermediate states

Cirigliano et al, '20, '21

Determination of the counterterm

Analogy to the Cottingham approach for pion/nucleon mass differences

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\} | nn \rangle$$

- Compute the $0
u\beta\beta$ amplitude by constraining the correlator

- . $k \ll \Lambda_{\chi}$ region determined by $\chi {\rm PT}$
- $k \gg {\rm GeV}$ region determined by OPE
- Model intermediate region using:
 - Form factors
 - Off-shell effects from NN intermediate states

- Gives $\tilde{g}_{\nu}^{NN}(\mu=m_{\pi})=1.3(6)$ in $\overline{\mathrm{MS}}$

Estimated 30% uncertainty

- Consistent with large-Nc Richardson et al, '21
- Validated with isospin-breaking contact terms, $j^{\mu}_W \rightarrow j^{\mu}_{\rm EM}$ (see backup)
- A_{ν} can then be used to fit \tilde{g}_{ν}^{NN} in *ab-initio* many-body calculations

W. Cottingham '63; H. Harari, '66

Cirigliano et al, '20, '21

Checking the Weinberg counting

Any effect for the dim-6,7,9 terms?

- In the Majorana-mass case, the LNV potential leads to a divergence
- Can perform the same checks for the higher-dimensional terms

Checking the Weinberg counting

Any effect for the dim-6,7,9 terms?

- In the Majorana-mass case, the LNV potential leads to a divergence
- Can perform the same checks for the higher-dimensional terms
 - Leads to divergences in several cases

Checking the Weinberg counting

Any effect for the dim-6,7,9 terms?

- In the Majorana-mass case, the LNV potential leads to a divergence
- · Can perform the same checks for the higher-dimensional terms
 - · Leads to divergences in several cases

- Need to include contact interactions at LO in these cases
 - Often disagrees with the Weinberg / NDA counting

Chiral EFT

Beyond NDA / Weinberg

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) \left| 0^+ \right\rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) | 0^+ \rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) | 0^+ \rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown
- Phase space factors coming from the leptonic parts
 - Accurately calculated

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) | 0^+ \rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown
- Phase space factors coming from the leptonic parts
 - Accurately calculated
- Nuclear matrix elements
 - Evaluation requires many-body methods

$$\Gamma^{0\nu}(0^+ \to 0^+) \sim \left| \langle 0^+ | \sum_{\text{nucleons}} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q}^2) \left| 0^+ \right\rangle \right|^2 = \sum_{i,j} G_{i,j} M_i M_j g_i g_j C_i C_j^*$$

- Combinations of Wilson coefficients
 - Perturbative, determined by BSM physics
- Low-energy constants
 - Several unknown
- Phase space factors coming from the leptonic parts
 - Accurately calculated
- Nuclear matrix elements
 Evaluation requires many-body methods

Nuclear matrix elements

	 All NMEs can be obtained from those of light/heavy neutrino exchange
l	· Olana distance ? C short distance

- 9 long-distance & 6 short-distance
 Hove been determined in literature
- Have been determined in literature
- Follow ChiPT expectations fairly well
 E.g. all O(1) and

$$\begin{split} M_{GT,sd}^{PP} &= -\frac{1}{2} M_{GT,sd}^{AP} - M_{GT}^{PP} , \qquad M_{T,sd}^{PP} = -\frac{1}{2} M_{T,sd}^{AP} - M_{T}^{PP} , \\ M_{GT,sd}^{AP} &= -\frac{2}{3} M_{GT,sd}^{AA} - M_{GT}^{AP} , \qquad M_{GT}^{MM} = \frac{g_{M}^{2} m_{\pi}^{2}}{6g_{A}^{2} m_{N}^{2}} M_{GT,sd}^{AA} , \end{split}$$

NMEs	⁷⁶ Ge							
	[74]	[31]	[81]	[82, 83]				
M_F	-1.74	-0.67	-0.59	-0.68				
M_{GT}^{AA}	5.48	3.50	3.15	5.06				1
M_{GT}^{AP}	-2.02	-0.25	-0.94	NMEs		7	⁶ Ge	
M_{GT}^{PP}	0.66	0.33	0.30	$M_{F, sd}$	-3.46	-1. <mark>5</mark> 5	-1.46	-1.1
M_{GT}^{MM}	0.51	0.25	0.22	$M^{AA}_{GT,sd}$	11.1	4.03	4.87	3.62
M_T^{AA}	-	_	-	$M^{AP}_{GT,sd}$	-5.35	-2.37	-2.26	-1.37
M_T^{AP}	-0.35	0.01	-0.01	$M^{PP}_{GT,sd}$	1.99	0.85	0.82	0.42
M_T^{PP}	0.10	0.00	0.00	$M^{AP}_{T,sd}$	-0.85	0.01	-0.05	-0.97
M_T^{MM}	-0.04	0.00	0.00	$M^{PP}_{T,sd}$	0.32	0.00	0.02	0.38

Nuclear matrix elements

- All NMEs can be obtained from those of light/heavy neutrino exchange
 - 9 long-distance & 6 short-distance
 - Have been determined in literature
- Follow ChiPT expectations fairly well
 E.g. all O(1) and

$$\begin{split} M_{GT,sd}^{PP} &= -\frac{1}{2} M_{GT,sd}^{AP} - M_{GT}^{PP} , \qquad M_{T,sd}^{PP} = -\frac{1}{2} M_{T,sd}^{AP} - M_{T}^{PP} , \\ M_{GT,sd}^{AP} &= -\frac{2}{3} M_{GT,sd}^{AA} - M_{GT}^{AP} , \qquad M_{GT}^{MM} = \frac{g_M^2 m_\pi^2}{6g_A^2 m_N^2} M_{GT,sd}^{AA} , \end{split}$$

NMEs ⁷⁶ Ge									
	[74]	[31]	[81]	[82, 83]					
M_F	-1.74	-0.67	-0.59	-0.68					
M_{GT}^{AA}	5.48	3.50	3.15	5.06				1	
M_{GT}^{AP}	-2.02	-0.25	-0.94	NMEs		7	⁶ Ge		
M_{GT}^{PP}	0.66	0.33	0.30	$M_{F, sd}$	-3.46	-1.55	-1.46	-1.1	
M_{GT}^{MM}	0.51	0.25	0.22	$M^{AA}_{GT,sd}$	11.1	4.03	4.87	3.62	
M_T^{AA}	-	_	-	$M^{AP}_{GT,sd}$	-5.35	-2.37	-2.26	-1.37	
M_T^{AP}	-0.35	0.01	-0.01	$M^{PP}_{GT,sd}$	1.99	0.85	0.82	0.42	
M_T^{PP}	0.10	0.00	0.00	$M^{AP}_{T,sd}$	-0.85	0.01	-0.05	-0.97	
M_T^{MM}	-0.04	0.00	0.00	$M_{T,sd}^{PP}$	0.32	0.00	0.02	0.38	

- The NMEs differ by a factor 2-3 between methods
 - For Majorana-mass term & other LNV sources

Barea et al. '15; Hyvarinen et al, '15; Horoi et al. '17, Menendez et al, '18

W. Dekens, Vienna, 13/04/21

Phenomenology

Two-coupling analysis

Light (almost) sterile neutrinos

Based on arXiv:2002.07182

G. Zhou, K. Fuyuto, J. de Vries, E. Mereghetti, WD
- Could play a role in leptogenesis
- Provides a dark matter candidate
- Canetti et al. '13 Boyarski et al. '19
- Appear in Left-Right models / Leptoquark scenarios / Grand Unified Theories
- Have been suggested as a solution to neutrino oscillation experiments Böser et al. '19

- Could play a role in leptogenesis
- Provides a dark matter candidate
- Appear in Left-Right models / Leptoquark scenarios / Grand Unified Theories
- Have been suggested as a solution to neutrino oscillation experiments Böser et al. '19

Canetti et al. '13

Boyarski et al. '19

• Add sterile effects by including:

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial\!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

see also Blennow et al, '10; Barea et al, '15; Giunti et al, '15; Bolton et al, '19;

- Could play a role in leptogenesis
- Provides a dark matter candidate
- Appear in Left-Right models / Leptoquark scenarios / Grand Unified Theories
- Have been suggested as a solution to neutrino oscillation experiments Böser et al. '19

Canetti et al. '13

Boyarski et al. '19

• Add sterile effects by including:

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \underbrace{\bar{\nu}_R^c M_R \nu_R}_{\nu_R} - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

 Majorana mass (L violating)

see also Blennow et al, '10; Barea et al, '15; Giunti et al, '15; Bolton et al, '19;

- Could play a role in leptogenesis
- · Provides a dark matter candidate
- Appear in Left-Right models / Leptoquark scenarios / Grand Unified Theories
- Have been suggested as a solution to neutrino oscillation experiments Böser et al. '19

Canetti et al. '13

Boyarski et al. '19

see also Blennow et al, '10; Barea et al, '15; Giunti et al, '15; Bolton et al, '19;

- Could play a role in leptogenesis
- · Provides a dark matter candidate
- Appear in Left-Right models / Leptoquark scenarios / Grand Unified Theories
- Have been suggested as a solution to neutrino oscillation experiments Böser et al. '19

Canetti et al. '13

Boyarski et al. '19

- EFT now includes ν_R as explicit degrees of freedom
- LECs and NMEs now depend on m_{ν_R}
- When/if ν_R can be integrated out depends on m_{ν_R}

Complication: m_{ν_R} dependence

Complication: m_{ν_R} dependence

 $A \propto m_{\nu_R}$

$$A \propto m_{\nu_R}^{-1}$$

Complication: m_{ν_R} dependence

- Neither EFT works well here
 - Missing operators ~ Λ_{χ}/m_{ν_R} Loop corrections ~ m_{ν_R}/Λ_{χ}

Complication: m_{ν_R} dependence

Toymodel

• SM + a sterile neutrino + a leptoquark

$$\mathcal{L}_{\mathrm{LQ}} = -y_{ab}^{RL} \bar{d}_{Ra} \tilde{R}^i \epsilon^{ij} L_{Lb}^j + y_{ab}^{\overline{LR}} \bar{Q}_{La}^i \tilde{R}^i \nu_{Rb} + \mathrm{h.c.} \,,$$

Cannot reproduce neutrino masses/mixings

Toymodel

$$\mathcal{L}_{LQ} = -y_{ab}^{RL} \bar{d}_{Ra} \tilde{R}^i \epsilon^{ij} L_{Lb}^j + y_{ab}^{\overline{LR}} \bar{Q}_{La}^i \tilde{R}^i \nu_{Rb} + \text{h.c.} ,$$

Cannot reproduce neutrino masses/mixings

 m_{v_R} [GeV]

T⁰/_{1/2} (¹³⁶ Xe) [yr]

O(100%) uncertainties not shown

Toymodel

Complementarity with other probes

- The dimension-six ν_R operators also induce:
 - Neutron & nuclear β decays
 - LHC signatures, $pp \rightarrow e\nu$
- What can $0\nu\beta\beta$ say if these probes find a signal?

Complementarity with other probes

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R
- Matching to chiral EFT involves unknown LECs
 - Renormalization requires terms beyond Weinberg counting
 - Can in principle be determined from LQCD
- Needed Nuclear Matrix Elements determined in literature
 Effect of 'new' LECs up to ~60% in light nuclei

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R
- Matching to chiral EFT involves unknown LECs
 - Renormalization requires terms beyond Weinberg counting
 - Can in principle be determined from LQCD
- Needed Nuclear Matrix Elements determined in literature
 - Effect of 'new' LECs up to ~60% in light nuclei
- $0\nu\beta\beta$ can probe
 - O(1-10) TeV scales for dim-9
 - O(100) TeV scales for dim-7
 - O(10) TeV scales for ν_R interactions
- Order 1 LECs + NMEs uncertainties

