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Precise determination of the strong coupling as provided by investigations
of the 7 hadronic width

Nc 2 0 (D)
R, = 75Ew|Vud‘ |:1 + 5 + dpw + DZ:>26Ud .

Dominant theoretical uncertainty resides in

@ Higher-order perturbative QCD corrections — Renormalons

o Different possibilities of resumming the perturbative series:

Fixed-order PT (FOPT) vs. Contour-improved PT (CIPT)
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Fixed-order vs. Contour-improved PT

@ Central quantity in the analysis of hadronic 7 decays: Adler function
D(s) = —s%l’l(s),

(6P~ pup () = [ deeP (0 TULILO)}0).

o R, expressed in terms of the Adler function: (x = s/M?)

R, = —6mi j{ i—x(l — x)3(1 + x) D(M?x).

x|=1

@ General structure of the Adler function in the chiral limit:

(ap = as(p) /)
0 n+1
(s) k cp i lo k=1 .
SO W O
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Fixed-order vs. Contour-improved PT

00 n+1

_ —l\/lfx
27”23 chnkj{ . (1 —x)3(1 + x) log” 1< 2 )
n=0 =

Ix[=1

o FOPT: Set u? = M2.

n+1

gg = ZaM chnk-]k 1-
o CIPT: Set p? = —M?x.

o) = Z cn1J2(M?)

J2(M2) = 1% dX(1_x) (1+x)(0‘5(_"/’3’()>n.

270 Jix=1 X m
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Fixed-order vs. Contour-improved PT

e Current status using corrections up to O(ad): (as(M,) = 0.32)
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Higher-Order Models [Beneke, Jamin ‘08]

1) Truncated Adler Function [ T ’
@ All unknown coefficients ¢, 1 "} ]
are set to zero. <, 02 ]
o CIPT becomes exact. wF ;
e FOPT oscillates around S Clpanaation ey’
CIPT result. L S N T I R T

2) Large-3y Approximation

e Cu oF T ]
«B[D](u) = 332(2_”) | A

= Borel sum
® FO perturbation theory ]
© Cl perturbation theory —
© Smallest term ]
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Perturbative order n
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Higher-Order Models [Beneke, Jamin ‘08]

3) Ansatz: Physical Model for the Adler Function

d%y diR diR
(u + 1)1+71 (u — )1+72 (u — )1+“/3

B[D](u) = +do + diu

@ Ansatz uses connection between renormalon singularities and
operators in the OPE to reproduce the pole structure.

@ Not possible to predict the residues.

@ FOPT prevails.

= Borel sum
@ FO perturbation theory
© Cl perturbation theory
# Smallest term
| n 1 n | L l L n L
2 4 6 8 10 12 14 16
Perturbative order n
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We want to address the following questions:

@ What can we tell about the ambiguities related to renormalon
singularities?
o How well does the Borel integral quantify this ambiguity?
o Are there alternatives ways to estimate the size of the ambiguity?

@ s it possible to improve the form of the Borel transform used in
physical models for the Adler function if one does not rely on the
large-By approximation?

e Can we gain more information on single renormalon singularities?
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© Introduction: Renormalons and Borel Summation
© R-evolution and Renormalon Sum Rule
© Application: Large-fy Approximation

@ Summary & Outlook
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Introduction: Renormalons and Borel Summation

@ As long as interactions are "weak” in QFTs, perturbation theory
allows us to express observables F as series

F= Zrn ag(p)-

@ BUT: These series are usually divergent with r, "< a"nl nZ(11).

@ Working assumption: Perturbative series is asymptotic.
o Best approximation given when truncating at smallest term.
e Truncation error typically of the order of this minimal term.
@ Important source of divergence — Renormalons.

o Related to small and large momentum behaviour in loop integrals (IR
and UV renormalons).

Christoph Regner Jan. 08, 2019 10 / 35



Introduction: Renormalons and Borel Summation

How can we quantify the large order behaviour of perturbative
series?
@ In order to sum factorially divergent series Borel summation is
especially useful:

The Borel transform of a series F = > °° /r, af*1 is defined as

o0

B[F](u Z il

=0

If B[F](u) has no singularities for v > 0 and does not increase to
rapidly for u — oo, the Borel integral

Flas) = /OOO due 7% B[F](u)

exists and F is called Borel-summable.
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@ Consider the Adler function:

dn(p?)
D p2 :4712p27
( ) dp2

i(P*guw — Pup)N(P?) Z/dxeipx (O] T{ju(x)j}(0)} 10) -

@ Only exactly computable all order contributions: Bubble chain
diagrams of massless quarks.
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e Calculation: (Q% = —p?, 1? = Q2, as = as(Q), k? = —k*/Q?)
dk2 nras (5 53\ 1"
S )

@ Large logarithmic enhancement for k2 >>1and k? << 1.

@ Split integral at k2 = ¢%/3 and perform integration for small and large
momenta:

w(k?) = 32CF k* + O(K® In k2),

~ C 5 In k2
2 F R2 4
w(k?) = 37Tk2<| k 6)+(’)< pr >
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o Result: ([} dxIn"(x) = (~1)" n!)

Noon+110/37£n| 75/3En| 11
D Zas [e < 1277) nl +e <67T> n! n+6 + ...

n=0

@ Leading IR renormalon and leading UV renormalon behaviour.

@ Drawback of bubble chain diagrams: ng-terms only give small
contribution of the complete perturbative coefficients.

o Take step beyond the quark bubble diagrams — Naive
Non-Abelianization (NNA)

3/11 2 3
ng — —2<3CA - 3”f> =—-5o

= Large-fo approximation.
@ Takes some non-Abelian contributions into account.
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@ Perform Borel transformation in variable u:

2¢10/3 5 1 5 1
N ~5/3 >
BID(u) ~ 5 +e ((1+u)2+6(1+u)>+

@ Information on divergent behaviour of D(as) encoded in the
singularities of its Borel transform — " Renormalon poles”.

e UV-poles — sign-alternating factorial divergence.
o IR-poles — fixed-sign factorial divergence.
@ Poles closest to the origin u = 0 of the Borel plane dominate high
order behaviour.
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@ General structure of Borel transform for a renormalon pole at

u=p/2:
> 1+b1p+5—/)
B[D](u
o1~ 3t TR0 )

(u—p}2)1+5N< >Za [ (1+n +6)(2ﬁ°) +]

=5/B0), &” =g®(p,{Bn})

@ Deficiencies of the large-5y approximation:
e Analytic structure of Borel transform and strength of its singularities
not reproduced correctly.
o Does not yield all singularities — e.g. instantons.
o We still use large-3y approximation to study main features related to
renormalon poles.
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Ambiguity of the Borel Integral

o Evaluate the Borel integral

~

D(as) = /OOO du 5% B[D](u).

e B[D](u) has singularities for u > 0 (IR renormalons) — To regulate
the integral we can move the contour above or below the singularities
in the complex plane.

@ Ambiguity of the Borel integral!
@ How well does the Borel integral quantify the size of the ambiguity?

o Traditional ansatz: AD(as) =Im [fooo du e Foos B[D](uv)

o Alternative ways to quantify the ambiguity?
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Ambiguity of the Borel Integral

Estimate ambiguity of the leading IR renormalon: B[D](u) ~ ﬁ

u —

_ __4mu 1 _ 27 4 /\4
AD(Q2) ~ %du e Boas(Q) > o< <e 50045(0)) ~ @

Ambiguity is related to non-perturbative power corrections.

Important connection:
IR pole at u > 0 <> Addition of higher dimensional terms in OPE

@ In general: IR renormalon singularity at v = p/2 is related to
non-pert. matrix element (0] O [0) ~ Ay
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Operator Product Expansion

@ Consider OPE for the Adler function:

(0] G, G*+ |0)

G +0(1/@°)

D(Q) = Go(Q, 1) + Coa(Q, 1)

@ Gluon condensate (0| Gjy GAM |0) ~ Nocp cancels ambiguity caused
by IR renormalon at u = 2.
— Scaling behaviour of power corrections can be inferred from IR
renormalon poles

@ Strength of renormalon poles related to anomalous dimension of
operators in OPE.
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Operator Product Expansion - General Case

@ OPE of a dimensionless observable & in the MS scheme:

U(Q) = fo(Q) 1 +C1(Q,/L)91(§g) —+ ...

+ ... (RGI-OPE)

~

_ G(Q)L+ 61(0)21,,

@ Perturbative coefficients in CAO factorially enhanced,
— Recall: Gy~ (u/Q)P Y, ol (1 )nI (2B80/p)" for large n.

e Cancellations between fo(Q) and 0 at large orders.

o Cancellation between Cy and 6 improved by switching to the
MSR-scheme that subtracts renormalon contributions at new scale R:

Co(@. R) = Co(Q) — (g)paco(R)

5Co(R Zan(R as(R < ) Za"( n|<25°>
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Operator Product Expansion - General Case

@ OPE in the MSR-scheme becomes:

7(Q) =Go(@, R + G(Q)

01(R) = 61 + RPSCo(R)

+...,

@ What are appropriate values for R in the OPE?

e 01(R) requires R ~ Aqcp.-
o G(Q, R) requires R ~ Q.

@ No choice for R avoids large logs in both, Co(Q, R) and 01(R).
— Solution: RGE for the scale R.

Q R
= G(Q.A 2 Aaco) = C(Q. Q) + | ang 1R
A nR

— R-evolution.
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R-evolution

@ R-evolution equation:

W=—&(“(L?<RP(SC0(R)> _ _<g>”§:fyf (aif)> ni1

n=0
1 & Ry (RN ™1
= GQuR1) = Co(@uRo) = g D [tk &2 (222))
n=0 0

@ Sums systematically asymptotic renormalon series and large logs to all
orders.

@ Free of renormalon ambiguities.
(Recall: Ambiguity ~ O(AQcp), independent of R)

@ R-evolution equation takes higher power IR sensitivities into account.
(Common RGEs only have logarithmic scale dependence.)
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R-evolution: Connection to Borel integral

o Consider large-y approximation — R-evolution series collapses
exactly to a single term:

R RP—1 (R
o w4 7y (4

@ Change of variables: tg = —27/(fpas(R)) and u= —p(t/tr — 1)/2

4u

[Co(Q: Ry)— Go(Q: Ro)] LL:/OOOdu [B(R1, u)—B(Ro, u)] e 7o

5.0~ (3) %7

@ Renormalon ambiguities cancel in difference of the Borel functions.

@ 1%t Application of R-evolution: Estimation of renormalon ambiguities.
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2" Application of R-evolution - Renormalon Sum Rule

@ Solution of R-evolution equation yields analytic expression for the
normalization of singular terms in the Borel transform.
@ Derivation:

R @R = (5) et = (B) S m (48)

= G(Q.R) = (@) =~ [ CamR Rl (R)

A p eiﬂ’([)lp+k) R
:<QQCD> ZS;EP) ——5 5 [ (=bip—k—=0,ptr)
=0 p 1P

tr = —27/(Boos(R)), br = B1/(2B0),  SP = SP(an, Bn)
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Renormalon Sum Rule

@ Algebraic manipulations:

o Asymptotic expansion of incomplete Gamma functions in as(R).
o Perform Borel transform.
o Use identities for hypergeometric functions.

o Leads to:

BIGH(Q. R)—c“o(a)l(u):—z() { p/zZ o 1;" e

0 S,Ep) pk+b1p+5

PP/2:ZF

£~ (1+k+ bip+9)

@ Analytic expression for normalization P, ; of singular contributions
that quantify the O(AgCD) renormalon ambiguity — Renormalon
Sum Rule.
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Renormalon Sum Rule

Sum Rule as a probe for renormalon ambiguities:
00 §(P) pk+bip+6
P k

P/2:Zr -

(1 +k+ byp +9)

@ Apply sum rule P,/ to any perturbative series as a probe for
O(A§¢p) renormalon ambiguities.
o Pyp~0orP,,#0.

@ Application: Use Sum Rule to gain more information on the
coefficients of renormalon poles in physical models for the Adler
function.

— Study Adler function in the large-3y approximation to illustrate the
applications of the R-evolution.
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Application: Large-5y Approximation

@ Borel transform of the Adler function in large-So: [Broadhurst ‘93]

432 1 & (—1) k
B[D](u) e _%?e 2_u p (k2—(1—u)2)2

e C: Scheme-dependent constant (C = —5/3 in MS).
@ Pole structure:
e Simple pole at u = 2.
e Simple and double poles at integer u (except for u = 0,1).
e Taylor expanding B[D](u) in u and performing the Borel integral term

by term gives: 00
D(Q) =Y anal*™(Q).
n=0

o — 20 i )4 ke @] 4 _Zl e 4 g

kr=3 kyy=—00
RAONS nl /K041, NIACNY (n+ 1)1/k("+2)
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Application: Large-5y Approximation

R-evolution for the Adler function:

e Consider contribution of a simple IR renormalon pole at u = p/2 > 0:

1 Q

DP2(Q, Ry) = o /R " dInR RP 75/2[015("?)]
0/AQCD

o In large-Bo: YR[as(R)] reduces exactly to a single term.

DP/2(Q, Ry) ~ _m[r<0’_27m>_r<07_277p>}
- P @ e e oas(Ro) 5005(Q)
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R-evolution vs. Borel Integration

Example: u =2 renormalon (Q = 10 GeV)

Q=10GeV
1 1
2294 A L :
=
2292 H L
i
1
g 2290p !
o 1
1
2.288)- — Borel Integral |
1
—— R-evolution !
2.286- i
— central value R-evol.
1
2.284 L . H . . J
0.0 0.5 1.0 15 2.0

RolGeV]

e Variation: Ry € [0.8,1.2]GeV.
o Central values:
e op = 2.2939 4+ 0.0002.
e or = 2.2925 4+ 0.0007.
o Relative deviation of the R-evolution central value compared to the
Borel integral: AR;BB ~ 0.06%.
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R-evolution vs. Borel Integration

Example: u = 2 renormalon (Q =2 GeV)

Q=2GeV

A

ple)

2 — Borel Integral
— R-evolution

— central value R-evol.

]
1
1
1
1
1
1
1
1
1
1
1
1
i
4
1
!

0‘0 0‘5 1‘0 1‘5 2‘0
.. RolGeV]

e Variation: Ry € [0.8,1.2]GeV.

o Central values:

e og =5.89+£0.15.
o or =4.99 +0.46.

@ Relative deviation of the R-evolution central value compared to the
Borel integral: Ar-s ~ 15%.
B
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Application: Large-5y Approximation

Renormalon Sum Rule in large-3; approximation:

BlGo(Q, A= Co(@)](w) = (~2) (g) P2 Gy

k+6
Zrl+k+5

(p) _ Vk
Sk (250)k+1’

Ve =ak-p—2(n+03)Poak1.

o Different possibilities:

p/2 converges to non-zero value — O(AQCD) renormalon.
° P /2 0 — O(AQcp) renormalon not present.

/2 diverges — O(AQcp) renormalon with p’ < p exists.
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Application: Large-5y Approximation

Sum Rule as a probe for the leading double pole at v = —1.
(C=-5/3)

25F T T T ™=

201 .
1.5

1.0

\/ v

P_q

0.0

-0.5}F

5 10 15 20

Perturbative order n

@ Sum rule converges to the residue of the leading UV double pole at
u=—1 (red line).

Christoph Regner Jan. 08, 2019 32/35



Application: Large-5y Approximation

Sum Rule as a probe for the leading double pole at v = —1.
(C=7/10)

0.220 F
0.215}F
0.210F
0.205F

0.200 - I\/\’\

0.195F

P-4

0.190 F

0.185F

Perturbative order n

@ Convergence of the sum rule can be improved with an appropriate
choice of C.
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Summary & Outlook

@ We discussed FOPT and CIPT.
@ We addressed the following issues:
e Quantification of ambiguities related to IR renormalon poles.
o Possibilities to improve the form of the Borel transform used in physical
models for the Adler function.
@ Concept of R-evolution:
e Provides alternative way to quantify the size of renormalon ambiguities.
e Renormalon Sum Rule: Estimation of the normalization of singular
terms in the Borel transform for a given perturbative series.
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Summary & Outlook

Outlook:

@ Use Renormalon Sum Rule to gain more information about the pole
structure of B[D](u) in physical models for the Adler function.

o Apply Sum Rule to exactly known coefficients up to O(a?).
@ «as from 7 decays:

e Impact of our results on the value of o determined from hadronic 7
decays?
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