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Motivation



Heavy quark masses

Fundamental parameters of the Standard Model, need to be known with high precision
In this talk we focus only on Bottom and Charm

Play a fundamental role in flavor physics:

* Unitarity triangle
* Rare kaon decays
* Test the Standard Model at the precision frontier

Also play a role in Higgs physics (branching ratios)



Heavy quark masses

Fundamental parameters of the Standard Model, need to be known with high precision
In this talk we focus only on Bottom and Charm

Play a fundamental role in flavor physics:

* Unitarity triangle
* Rare kaon decays
* Test the Standard Model at the precision frontier

Also play a role in Higgs physics (branching ratios)

But... quarks are confined particles, therefore their mass is not observable!
The mass of a heavy quark needs to be defined within perturbation theory...

... as any other parameter in the QCD Lagrangian (renormalization, J-dependence)

Only indirect measurements of quark masses possible.



Quarkonium

Charm and Bottom quarks discovered as QQ bound states

SLAC and BNL (1974), /Y bound state Fermilab (1977), Y bound state
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Charm and Bottom quarks discovered as QQ bound states
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Quarkonium

Charm and Bottom quarks discovered as QC_Q bound states

SLAC and BNL (1974), /Y bound state
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Theoretical description in early days in terms of a very simple non-relativistic

description, the Cornell Model, with only three parameters:

* Quark mass: mg )

* Coulomb-type interaction: (s

[Eichten et. al. PRL
34:369-372 (1975)]

Interplay between perturbative and
> non-perturbative is crucial

* Linear raising potential:“string tension” 0. ,
confinement



Cornell wmodel and bhe
stakic QCD FQ&MEQL



Cornell Model
VCornell(T) — CF% +or

“‘static potential”

VCorneII(r) [GeV]
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Cornell Model
VCornell(T) — CF% +or

“‘static potential”

these terms yield dependence
on (n,l) quantum numbers

Solved numerically (Numerov)

VCorneII(r) [GeV]
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Cornell Model

VCornell(T) — CF > +or —+ VLS + VSS -+ VT + nothing

“‘static potential” spin-dependent |/m?2 corrections
these terms yield dependence these terms give dependence
on (n,l) quantum numbers on (s,j) quantum numbers

Solved numerically (Numerov)  Use perturbation theory

VCorneII(r) [GeV]

r [fm]



Cornell Model

VCornell(T) — CF_ +or -+ VLS + VSS -+ VT + nothing

“‘static potential”

these terms yield dependence
on (n,l) quantum numbers

Solved numerically (Numerov)

VCorneII(r) [GeV]
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spin-dependent |/m?2 corrections

these terms give dependence
on (s,j) quantum numbers

Use perturbation theory
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Cornell Model

VCornell(T) — CF_ +or -+ VLS + VSS -+ VT + nothing

“‘static potential”

these terms yield dependence
on (n,l) quantum numbers

Solved numerically (Numerov)
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spin-dependent |/m?2 corrections

these terms give dependence
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Use perturbation theory

MPBL_ [GeV]: Model vs experiment vs

1100: | rl | | | | r | | | | | -
10.75 [~ n=2 R .
10.50F A
- | "
10.25 | 20 O LI L A .
10.00F | . P :
9.75F | a5 = 0.363 £ 0.008 ' need string
950:_ i 0 =0.202 + 0.006 GeV? i breakin E
TFe Tim,=4743£0.010GeV INg :

gopbl 1 1 111111 1]

S SN N N N N S SN

P U e e Y e Y e Y Y e U

P e e U e Y e

N N N N N SN



EFT treatment

Modern method to deal with problems widely separated scales

For quarkonium such theory is called NRQCD:
[Bodwin, Braaten, Lepage, PRD 51 (1995) 1125-1171]

RGE-improved versions of NRQCD are called

PNRQCD  [Pineda, Soto; Brambilla, Pineda, Soto, Vairo NPB 566 (2000) 275]
vNRQCD [Luke, Manohar, Rothstein, PRD 61 (2000) 074025]

Can be also used for other processes, such as t-t production at threshold



Static QCD potential

: many more terms known,
Vi r) = Viatic(T) + —— corrections .
qop(r) static (1) mn also quantum corrections

)

]aij logj(rue”E)] known to O(O/SL)
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[Fischler, NPB 129 (1977) 157-174], [Anzai et al, PRL 104 (2010) 112004 ]
[Schroder, PLB 447 (1999) 321-326], [Brambilla et al, PRD60 (1999) 091502]
[Peter, PRL 78 (1997) 602-605] , [Lee et al, PRD 94 (2016) 054029]
[Smirnov et al, PLB 668 (2008) 293-298, PRL 104 (2010) 112003]



Static QCD potential

: many more terms known,
Vi r) = Viatic(T) + —— corrections .
qop(r) static (1) mn also quantum corrections
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Static QCD potential

= Vitatic () + — corrections
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many more terms known,
also quantum corrections
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But a potential is not an observable!
Energy is an observable

b =72 m%()le + ‘/static (T)

Same renormalon! cancels in the difference
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Static QCD potential

: many more terms known,
Vi r) = Viatic(T) + —— corrections .
qop(r) static (1) mn also quantum corrections

)

Vo) — — 7Su) [1 N 2:: [as(u)] i log (1 1 evE)] known to O(a)

47

2 Mp + Vsiaric(r) [GeV]

But a potential is not an observable!

9.5 .
Energy is an observable
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E =2 m%ole + ‘/static (T)

7.0 MSR scheme Same renormalon! cancels in the difference

B T R R e— v E =2mg ™ (R) + 0m (R, 1) + Visatic(r)

r [fm]

Important to use MSR mass because neitherlog(r ) norlog(R /) should be large

It also makes qualitative agreement with Cornell model better



Master formula for
quarkonta masses



Kiyo, Sumino NP B889
Master formula [ e,

e (2 agnﬁ) 2 o0 af,f”) i
Ex () = 2| 1= OIS (ST SR (L) | + o
i=0 | perturbative

[Penin, Steinhauser, PLB 538 (2002) 335-345]
[Beneke, Kiyo Schuller, PLB 714 (2005) 67-90]



Kiyo, Sumino NP B889
Master formula [ e,

el . CEa™ ()2 S (o™ (W)Y

i i=0 | perturbative
We assume s = m v > Aqcp certainly true for n < 4
And either fius = mv® > Aqcp (trueforn=1) local condensates
or pus ~ Aqcp (possibly true for n = 2) non-local condensates

perturbative and non-perturbative

For n = 3 one seems to have < A
Hus QCD of the same order

We will estimate those by comparing fits with different datasets and by studies of
perturbative stability

For a recent study of non-perturbative effects, see [I. Rauh 1803.05477 (2018)]



Kiyo, Sumino NP B889
Master formula [ e,

e (12 agne) 2 o0 Ong) i
Ex(.me) = 2| 1~ FECHES™ (ST ) R (L, ) | + o
i=0 | perturbative

1

Ly, = 10g< ) + Hn—l—ﬁ Pz L) = Ci i L’
2 OFOégne) (/L)m%()le ( ) Z yJ

7=0

First quantum correction is O(a?), but static potential starts at O(o,)



Ex(u,ng) = ng)le 1

Master formula
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(ozfs””(u) 7’

) €i+1Pi(Ln£)

1

PZ(L) — Z Ci,j Lj

7=0

First quantum correction is O(a?), but static potential starts at O(o,)

bookkeeping parameter that labels the various orders in the T-expansion

[Hoang, Ligeti, Manohar, PRL 82 (1999) 277-280; PRD 59 (1999) 074017]

[Kiyo, Sumino NP B889
(2014) 156-191]

+ non-

| perturbative

Crucial when cancelling the static potential renormalon in the quarkonium mass

Important when figuring out alternative perturbative expansions

Sets up a counting for the MSR-mass parameter R



Ex (p,me) = 2my

Ly,

log (

pole 1
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EX(,“?”E) — QmQ

Ly,

log (

pole 1

nL

- C? ozgm) (1)

Master formula
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Kiyo, Sumino NP B889
Master formula [ e,

e (12 agne) 2 o0 Ong) i
i=0 | perturbative

1

Ly, = IOg( ) + Hn—l—f Pz L) = Ci i L’
2 CFOégne) (/,L)m%Ole ( ) Z 5J

j=0

Argument in logs non-trivial: explicit /t dependence as well as through (™) (1)

Dependence gets even more complex when switching to the MSR mass



Kiyo, Sumino NP B889
Master formula [ e,

e (12 @gne) 2 o0 Ong) |
i=0 | perturbative

)
T :
Fne = log( : pOle) T Hnre P’i(L) — E : Ci,j L’

CFOégW) (ﬂ)mQ =0

Argument in logs non-trivial: explicit /t dependence as well as through (™) (1)
Dependence gets even more complex when switching to the MSR mass

n
Harmonic number F, = E 1 grouped with the log for convenience
[/
1=1



Kiyo, Sumino NP B889
Master formula [ e,

e (12 agne) 2 o0 Ong) i
Ex () = 2| 1= S (ST ) SR (L) |+ o
i=0 | perturbative

1

Ly, = 10g< ) + Hn—I—E Pz L) = Ci i L’
£ OFOégne) (/,L)m%()le ( ) Z s

7=0

: : : 1 :
In this formula corrections in — and « are of the same order: mg only scale involved
maq



Kiyo, Sumino NP B889
Master formula [ e,

e (12 agne) 2 o0 Ong) i
i=0 | perturbative

1

Ly, = 10g< ) + Hn—l—f Pz L) = Ci i L’
L OFOégne) (Iu)mgzole ( ) Z J

j=0

: : : 1 :
In this formula corrections in — and « are of the same order: mg only scale involved
ma

Ci,0 are known to up to i = 3, €Ci,j>0 can be computed demanding p independence

k—1
2 , ; :
Chg+l = T {(J +2) Br—1-5 ¢+ > _ Br-1-i[i +2) ey — (G +1) Ci,j+1}}



[Kiyo, Sumino NP B889

Master formula [ e,

e (12 @gne) 2 o0 agne) |
i=0 | perturbative

1

Ly, = 10g< ) + Hn—l—f Pz L) = Ci i L’
£ CFOégne) (Iu)mzzole ( ) Z ']

7=0

: : : 1 :
In this formula corrections in — and « are of the same order: mg only scale involved
ma

Ci,0 are known to up to i = 3, €Ci,j>0 can be computed demanding p independence

k—1
2 , : :
Ck,j+1 — m {(] =+ 2) /Bk'—]_—j Cj.j + E 5[@—1—@' [(7/ T 2) Ci,j — (] + 1) Ci7j+1:|}
i=j+1

Ci,j depend on the bound-state quantum numbers: (n, |, j, s)

c3,0 depends on log(a;): first hint of ultra-soft effects. Could be resumed within EFTs.



Kiyo, Sumino NP B889
Master formula [ e,

|, C2al™ (u)? S (o™ -
| perturbative

1=0

1

Ly, = 10g< ) + Hn—l—f Pz L) = Ci i L’
L OFOégne) (Iu)mgzole ( ) Z s

7=0

: : : 1 :
In this formula corrections in — and « are of the same order: mg only scale involved
ma

Ci,0 are known to up to i = 3, Ci,j>0 can be computed demanding p independence

k—1
2 , . .
Ck,j+1 = m {(J +2) Br—1—j ¢} ; +Z BOr—1-i [(Z +2)ci;—(G+1) Civﬂ'“}}
i=j+1

Ci,; depend on the bound-state quantum numbers: (n, |, j, s)

c3,0 depends on log(a): first hint of ultra-soft effects. Could be resumed within EFTs.

This formula has an mg-independent renormalon equal to that of —2 mgﬂe

inherited from the QCD static potential



Master formula in shork-
distance scheme and finite
charm quark mass effects



Master formula in short-distance scheme
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Master formula in short-distance scheme

(’n,g) TL_
1 n58D s (,U,)

pole
ey’ =mg




Master formula in short-distance scheme
i (nge) n’
bole o sp (a8 (w)
. _-_H;g 5nD( - )
_ Y - counting scheme parameter




Master formula in short-distance scheme

(ng) n’|

pole [ 8D n ¢SD [ &s ()
mg  =mg |1+ E e’ o, ( y )
_ n=1 i

Depends on some scale R Y - counting scheme parameter

SD

Depends on powers of log(ﬁ) and proportional to
m
@

R



Master formula in short-distance scheme

(ne)
pole SD sp( @s (1)
s mo +Zs ( e >

Depends on some scale R Y - counting scheme parameter

SD

) and proportional to
e

Depends on powers of log(%

Ex(,u,ng)_Qm {1+Z ((W) )>[5§D FPSD (1 “FZ(SSDPSD ]}




Master formula in short-distance scheme

(ne)
pole SD sp( @s (1)
s mo +Zs ( e >

Depends on some scale R Y - counting scheme parameter

Depends on powers of log<ﬁ) and proportional to

R

SD
ma

Ex (1, n¢) = 2mgP {1+Z ( 0" )>[5§D—FP¢S_D1—(1— i FZ5SDPSJ 1”

71=1

rCras™ ()

F =
2n2

Different powers of &5 in the same ¢ order



Master formula in short-distance scheme

(ne)
pole SD sp( @s (1)
s mo +Zs ( e >

Depends on some scale R Y - counting scheme parameter

Depends on powers of log<ﬁ) and proportional to

R

SD
ma

Ex (1, n¢) = 2mgP {1+Z ( 0" )>[5§D—FP¢S_D1—(1— i FZ5SDPSJ 1]}

71=1

T 012? (W)( ) depend on Lsp = 10g< A ) + Hiqo

(ne)
F = 52 CaS()Q

and C; ; , 5§D

Different powers of &5 in the same ¢ order



Master formula in short-distance scheme

(ne)
pole SD SD [ @s (M)
— 1 o,
mQ mo +Z€ ( i >

Depends on some scale R

Depends on powers of log<ﬁ) and proportional to

R

SD
ma

Ex (1, n¢) = 2mgP {1+Z ( 0" )>[5§D—FP¢S_D1—(1— i FZ5SDPSJ 1”

71=1

T Cta (W)( ) depend on Lsp = log< ha > + Hpe

(ne)
F = 52 CO‘S()Q

and C; ; , 5,L-SD

The scale that minimizes these logs will be denoted generically (s



Master formula in short-distance scheme

(ne)
pole SD SD [ @s (M)
— 1 o,
mQ mo +Z€ ( i )

n=1

Depends on some scale R

SD

) and proportional to
e

Depends on powers of log(%

Ex (1, n¢) = 2mgP {1+Z ( 0" )>[5§D—FP7;S_D1—(1— i FZ5SDPSJ 1]}

71=1

T Cta (W)( ) depend on Lsp = log< ha ) + Hpe

(re)
F: 2n2 CCVS () Q

and C; ; , 5-SD

The scale that minimizes these logs will be denoted generically (s

Two kinds of logs if short-distance mass is used. To minimize both of the them
simultaneously one either has a tunable scale R, or a fixed scale R ~ [ig



Master formula in short-distance scheme

(ne)
pole SD SD [ @s (M)
— 1 o,
mQ mo +Z€ ( i )

n=1

Depends on some scale R

SD

) and proportional to
e

Depends on powers of log(%

Ex (1, n¢) = 2mgP {1+Z ( 0" )>[5§D—FP¢S_D1—(1— i FZ5SDPSJ 1]}

71=1

T Cta (W)( ) depend on Lsp = log< ha ) + Hpe

(re)
F: 2n2 COZS () Q

and C; ; , 5-SD

The scale that minimizes these logs will be denoted generically (s

Two kinds of logs if short-distance mass is used. To minimize both of the them
simultaneously one either has a tunable scale R, or a fixed scale R ~ s

MSR mass | -S mass



Effects from massive lighter quarks

EX (/L, Ny, m%dea m}q)ole) — EX (:ua Ny, m%de) + 526E§(1) + 535E§?) + -



Effects from massive lighter quarks

EX (:ua Ny, m%dea mg()le) — EX (:ua Ny, m%ole) + 525E§(1) + 535E§(2) + -

M@ heavy quark

11 ¢ massive lighter quark



Effects from massive lighter quarks

EX (/L, Ny, m%dea mg()le) — EX (:ua Ny, m%de) + 525E§) + 535E§(2) qFooc

MQ heavy quark massless result corrections from massive lighter quarks

Mg massive lighter quark



Effects from massive lighter quarks

Ex (1, ng, mby <, mb') = Ex (p,me, mpy) + 28BS + 3B +- ..

massl| resul rrections from massive lishter quarks
MQ heavy quark assless result correct g g

Mg massive lighter quark higher order terms currently unknown, but ...

Computed in [Eiras, Soto PLB49 | (2000), 101-110] for any state

Computed in [Hoang hep-ph/0008102] for the ground state

Computed in [Beneke, Maier, Piclum, Rauch NPB89 1 (2015), 42-72] for any set of quantum
numbers



Effects from massive lighter quarks

Ex (1, ng, mby <, mb') = Ex (p,me, mpy) + 28BS + 3B +- ..

massl resul rrections from massive lishter quarks
MQ heavy quark assless result corrections g q
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ny¢ scheme: massless limit  manifest, decoupling limit not well defined

ny — 1 scheme: decoupling limit manifest, massless limit not well defined



Effects from massive lighter quarks

Ex (1, ng, mby <, mb') = Ex (p,me, mpy) + 28BS + 3B +- ..

massl resul rrections from massive lishter rk
MQ heavy quark assless result corrections fro assive lighter quarks

Mg massive lighter quark higher order terms currently unknown, but ...

Computed in [Eiras, Soto PLB491 (2000), 101-110] for any state

Computed in [Hoang hep-ph/0008102] for the ground state

Computed in [Beneke, Maier, Piclum, Rauch NPB89 1 (2015), 42-72] for any set of quantum
numbers

ny¢ scheme: massless limit  manifest, decoupling limit not well defined

ny — 1 scheme: decoupling limit manifest, massless limit not well defined
Observation made in [Brambilla, Sumino,Vairo PRD65 (2002) 043001 |: true answer very
very close to decoupling limit:

Use decoupling limit plus trick to parametrize

Use ny — 1 scheme plus corrections to incorporate O(e”) charm quark mass effects



Effects from massive lighter quarks

10726 52 [GeV]

0 05 10 15 20 25 3
m[GeV]

below mﬁ use fit function of the form f(m.) = m.|a + b log(m,) ]

above use decoupling limit

demand smooth junction

It appears clear we will be in need of massive lighter quarks effect on the short-distance
mass as well



Schemes for quarks
mMasses



The pole mass

gﬁﬁmf%% + .- = 1 mo = bare mass
Y(p, mo) p —mo— £

Lt- independent

has divergences quark mass defined in context of perturbation theory



The pole mass

gﬁﬁmj%% + .- = 1 mo = bare mass
Y(p, mo) p —mo— £

[t- independent

has divergences quark mass defined in context of perturbation theory

Pole scheme: propagator has a pole for p — m, The whole diagram at
P2 = m? is absorbed

m, = mg + X(my, mo) pole mass is [ - independent into the mass definition



The pole mass

% R 1 mo = bare mass
Y(p, mo) p —mo— £

[t- independent

has divergences quark mass defined in context of perturbation theory

Pole scheme: propagator has a pole for p — m, The whole diagram at
P2 = m? is absorbed

m, = mg + X(my, mo) pole mass is [ - independent into the mass definition

Absorbs into mass parameter UV fluctuations from scales > 0

\_

1\ Linear sensitivity to infrared momenta: factorially

g@ Mo growing coefficients in perturbation theory

¢

008>

> Sensitivity to non-perturbative regime

Y(m,m) ~m Z " (285)™ n! O(Aqcp) renormalon

J




The MS mass

__ 1
MS scheme: propagator is finite, subtract only — in dimensional regularization
€

m(#) = Moy Z(mpamO)’% MS mass is M-dependent



The MS mass

__ 1
MS scheme: propagator is finite, subtract only — in dimensional regularization
€

m(#) = Moy Z(mpamo)’% MS mass is M-dependent

my — m(p) = B(myp, mo)|gnite = 0Mygg(H) no renormalon problem

[t - dependent

Absorbs into mass parameter UV fluctuations from scales > m(m)



The MS mass

__ 1
MS scheme: propagator is finite, subtract only — in dimensional regularization
€

m(#) = Moy Z(mpam())’% MS mass is M-dependent

my — m(p) = B(myp, mo)|gnite = 0Mygg(H) no renormalon problem

[t - dependent

Absorbs into mass parameter UV fluctuations from scales > m(m)

Smigs () = m(n) [“gnﬁz;’”m)} §

n=1

Z O, m (1g, ) log™

m=0

—
3|

S

~

This equations encodes the p-anomalous dimension of the MS mass



The MS mass

1

MS scheme: propagator is finite, subtract only — in dimensional regularization
€

m(ﬂ) = Moy Z(mpamO)’% MS mass is M-dependent

my — m(p) = B(mp, mo)|anite = OMygg(H) no renormalon problem

[t - dependent

Absorbs into mass parameter UV fluctuations from scales > m(m)

_ as™ " (1)]" ¢ m( (1)
omygs(p) = m(p) Z A Z (p,m (T0g; Mg ) log ™| ——
n=1 m=0 H
This equations encodes the p-anomalous dimension of the MS mass
- (ng+np) 1n
84
Let us define T = m(m) : my — m = mnz_:l _ i i (,u) _ an,o(nﬁ, nh)

This series contains the renormalon
The MS mass is very far from a kinetic or threshold mass, resembles a coupling constant

Cannot be used in processes for which the quark mass is no longer a dynamical scale



PO I e m as S a m b igu ity §237;:%Phys. Lett. B344 (1995)

D,
N

C>’
> q

Based on the observation that the B-meson mass Mp = m>°° + A is renormalon free

\/

ambiguity cancels in the
sum of these two terms



PO I e m as S a m b i gu ity gi?’?;:;} Phys. Lett. B344 (1995)

D,
N

C>’
> q

pole

Based on the observation that the B-meson mass Mp = m; is renormalon free

therefore the ambiguity in the
pole mass is mass-independent



PO I e m as S a m b igu ity [Beneke Phys. Lett. B344 (1995)

341-347]

D,
N

C>’
> q

Based on the observation that the B-meson mass Mp = m>®° +,A is renormalon free

Wilson coefficient is | to all orders
No anomalous dimension

therefore the ambiguity in the pole
mass is scheme and scale independent



Status of perturbative coefficients

Considering all lighter quarks massless, coefficients known up to O(ai‘)

|-loop: [Tarrach (1981)]
2-loop: [Gray, Broadhurst, Grafe, Schilcher (1990)]

3-loop: [Chetyrkin, Steinhauser (1999), Chetyrkin, Steinhauser (2000), Melnikov, Ritbergen (2000), Marquard, Mihaila, Piclum,
Steinhauser (2007)]

4-loop: [Marquard, Smirnov, Smirnov, Steinhauser (2015), Marquard, Smirnov, Smirnov, Steinhauser, Wellmann (2016)]
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Status of perturbative coefficients

Considering all lighter quarks massless, coefficients known up to O(ai‘)

|-loop: [ Tarrach (1981)]
2-loop: [Gray, Broadhurst, Grafe, Schilcher (1990)]

3-loop: [Chetyrkin, Steinhauser (1999), Chetyrkin, Steinhauser (2000), Melnikov, Ritbergen (2000), Marquard, Mihaila, Piclum,
Steinhauser (2007)]

4-loop: [Marquard, Smirnov, Smirnov, Steinhauser (2015), Marquard, Smirnov, Smirnov, Steinhauser, Wellmann (2016)]

Asymptotic form known for all orders from renormalon behavior
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£=0

Corrections from massive lighter quarks known up to O(a3)

S
* 2-loop: [Gray, Broadhurst, Grafe, Schilcher (1990)]
* 3-loop: [Bekavac, Grozin, Seidel, Steinhauser (2007)]



Status of perturbative coefficients

Considering all lighter quarks massless, coefficients known up to O(ai‘)

* l-loop: [Tarrach (1981)]
* 2-loop: [Gray, Broadhurst, Grafe, Schilcher (1990)]

* 3-loop: [Chetyrkin, Steinhauser (1999), Chetyrkin, Steinhauser (2000), Melnikov, Ritbergen (2000), Marquard, Mihaila, Piclum,
Steinhauser (2007)]

* 4-loop: [Marquard, Smirnov, Smirnov, Steinhauser (2015), Marquard, Smirnov, Smirnov, Steinhauser, Wellmann (2016)]

Asymptotic form known for all orders from renormalon behavior
© @)
a,> =4m —7\71/2(250)71_1 de (1+b1)n—1-¢
£=0
Corrections from massive lighter quarks known up to O(a3)

S
* 2-loop: [Gray, Broadhurst, Grafe, Schilcher (1990)]
* 3-loop: [Bekavac, Grozin, Seidel, Steinhauser (2007)]

4-loop and higher can be estimated within a few percent

[Lepenik, Hoang, Preisser (2017)], [VM, PG. Ortega (2017), this talk]



T h e M S R IMNASS  [Hoang, Jain, Scimemi, Stewart (2008)]

[Hoang, Jain, Lepenik, Mateu, Preisser
We exploit the fact that the ambiguity is mass-independent Scimemi, Stewart (2008)]

Since the renormalon only sees light flavors, express the series in terms of oéne)

Either by settingnn =0 (Natural MSR mass or MSRn)

Or expressing o{™ " (mg) in terms of o (mg) (Practical MSR mass or MSRp)
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< Q — " ¢ MS to pole relation

The MSRn mass can be easily matched to the MS mass at R = mo

By construction mg,>" " (mg) = mq(Mg) to all orders



T h e M S R IMNASS  [Hoang, Jain, Scimemi, Stewart (2008)]

[Hoang, Jain, Lepenik, Mateu, Preisser
We exploit the fact that the ambiguity is mass-independent Scimemi, Stewart (2008)]

Since the renormalon only sees light flavors, express the series in terms of oéne)

Either by settingnn =0 (Natural MSR mass or MSRn)

Or expressing o{™ " (mg) in terms of o (mg) (Practical MSR mass or MSRp)

47 MS to pole relation

The MSRn mass can be easily matched to the MS mass at R = mo

m}éole o mgSR(R) — R i aMSR(ng) (agne) (R) )n Same ambiguity as

By construction mg,”"*"(

mSR) - MR [GeV)

mq) = mg(mg) to all orders

0.04— aEa —

j_o(a4) Fixed—Order 1 Both realizations coincide at O(«)
0.03}

- { Difference of masses is renormalon-free
0.02} 1 as long as series expressed in terms of

: (g at the same scale
0.01 ]

0 = | . Last statement true for any series

25 50 75 100 125 150
R [GeV]



R- evo I u ti O n [Hoang, Jain, Scimemi, Stewart (2008)]

In a given physical situation one has a perturbative expansion in terms of (1)

Therefore we have to choose y ~ R

The value of Y is in general much smaller than Mg for the cases we care

Therefore there are large logs of mg/R that need to be summed up:

o0 n+1
RS () = - Ry ()] = - RS 21 ( 220 )
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In a given physical situation one has a perturbative expansion in terms of (1)

Therefore we have to choose y ~ R

The value of Y is in general much smaller than Mg for the cases we care

Therefore there are large logs of mg/R that need to be summed up:

o n—+1
P d MSR(R):_RWR[O&S(R)] :_szﬁj(az(?f)>

dr'"'?
pole mass is R-independent —> R-anomalous dimension from MSR definition

ambiguity R-independent ——— R-anomalous dimension renormalon-free

n—1
general formula 7. = anprt — 2 Z (n—j) Bj ap>st
j=0



R- evo I u ti O n [Hoang, Jain, Scimemi, Stewart (2008)]

In a given physical situation one has a perturbative expansion in terms of (1)

Therefore we have to choose y ~ R

The value of Y is in general much smaller than Mg for the cases we care

Therefore there are large logs of mg/R that need to be summed up:

o0 i1
Rd(;z MsR(R) — — Ry%a,(R)] = _an_(ﬂf(al(f))

pole mass is R-independent —> R-anomalous dimension from MSR definition

ambiguity R-independent ——— R-anomalous dimension renormalon-free

M M renormalon cancels
general formula 7, = apy — 2 Z — 5) Bj ams
between these two terms



R_ eVO I u ti O n [Hoang, Jain, Scimemi, Stewart (2008)]

In a given physical situation one has a perturbative expansion in terms of (1)

Therefore we have to choose y ~ R

The value of Y is in general much smaller than Mg for the cases we care

Therefore there are large logs of mg/R that need to be summed up:

00 ntl
P d MSR(R):_RWR[O@(R)] :_szg(az(;z))

dR
pole mass is R-independent —> R-anomalous dimension from MSR definition

ambiguity R-independent ——— R-anomalous dimension renormalon-free

n—
M . M renormalon cancels
general formula Y =ayPF —2) (n—j) B ay>}

nJ between these two terms
Ro
Solution to RGE equation: MSR(RQ) MSR(Rl) / dR~Ea(")(R)]
R4

Sums up large logs of Ry/R| associated to the renormalon to all orders in pert. theory

These logs are also summed up e.g.in for the Renormalon Subtracted mass



Massive lighter quarks

miy'® — Mg = 6mq(Me) + Mg ANe (Mg, §) M O(a?)

A A o
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massless Mass COI"I"eCtIOﬂS
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Massive lighter quarks

miy'® —mq = 6mq(mq) + Mg ANS (g, &) M O(a?)

massless Mass COI"I"eCtIOﬂS

_ o\retnn)
A%f(m@f) :Z( - yy (mQ)> AMS(ne,nm f My /T g% g@ﬁ

n=2

Two obvious constraints MS (1, 1) = a5 (g — Lo, + 1) — a¥ (g, mp)



Massive lighter quarks

mgﬂe —mg = 5mQ(mQ) + mQ A%?(WQ,f) M O(Ozi)

massless mass corrections

o (et ) (7
S e e S

n—

Two obvious constraints S
AMS (g mp, 1) = aMS(ng —1L,ny+1)—a S(ng,nh)
10™*x Ay(ny, np, = 0, &)
15.0f 12t
12.5F 10}
10.0F
7.5F

5.0F
2.5F
0.0

N B O O

o




Massive lighter quarks

mey ¢ — Mg = 6mq (M) + Mq Ay (Mg, ) M O(a?)

massless mass corrections

(ne+nh)
M S (mq) M
AMS (7, €) = ) ( = < )A S(ng, np, €) ¢ =, /Mo g(% 5@3

n=2

Two obvious constraints NS (1 1) = oV (ng — 1 + 1) — @™ (1, )

10 xA3(n, 4,1n=0,8) - 107 x Ag(ny, nh = 0, )
T T ; 12-_ 1 1 1

10F

15.0F
12.5}
10.0f
7.5k
5.0F
2.5
0.0, .

S N B OO 0

[V/VI PG. Ortega (20/7)]

0 0.2 0 4 0.6 0.8 1

o omg” (R, Mg) = dmg” " (R) + R A, (R, €R)
Massive lighter quarks

ny k
effects on the MSR mass A, (R.6r) = AW (¢p) (O‘g )(R)> , ¢p = my/R

k=2

different implementation in [Lepenik, Hoang, Preisser (2017]



MSR with Massive lighter quarks —reomscon

MSR — MSR
omq (R, mg) = omg™"(R) + RAm, (R.€r) . exact Heavy Quark symmetry for MSRn
(ne) K
(k) (R) pole  _ MSRn pole  —
Am, (R, €R) = ZAmq ( - ) , mo mg~ " (Mg) = my Mg
d MSR



MSR with Massive lighter quarks

omey " (R, my) = dmg° (R) + R Am, (R, &R) exact Heavy Quark symmetry for MSRn

(W) &
k (R) pole MSR 1 —
A, (R, &R) = E Afnz ( y= > , mg  — Mg (Mg) =mg”° — My

d ; ;
— —mp " (R) = AR (R)] + 57" [¢r, 0" (R)] mass-dependent R-anomalous dimension

n—+1
R (re) R oi" (R)
57 [vaas ¢ (R)] — Z&yn (€R) A
n=1

massless R-anomalous dimension



MSR with Massive lighter quarks

MSR — \ __ MSR
omq (R, mg) = omg™"(R) + RAm, (R.€r) . exact Heavy Quark symmetry for MSRn
(W) K
(k) (R) pole MSR ] .
Am, (R, €R) = ZAmq < - > , mey - —mg> (M) = mbo¢ —m,
d MSR

— —mp " (R) = AR (R)] + 57" [¢r, 0" (R)] mass-dependent R-anomalous dimension

(W) n+l

massless R-anomalous dimension

dér

57 (Er) = AnlEr) — £ 23 (0 §) 5 Bney(€r)
=0



MSR with Massive lighter quarks

MSR — \ __ MSR
omq (R, mg) = omg"(R) + RAm, (R.6r) . exact Heavy Quark symmetry for MSRn
(W) K
(k) (R) pole MSR o 1 __
Am, (R, ER) = E Amq ( e ) , mg  — Mg (Mg) =mg”° — My

d ; ;
— —mp " (R) = AR (R)] + 57" [¢r, 0" (R)] mass-dependent R-anomalous dimension

&(nz) n+1
Y er, o™ (R)] = ;675(5R)< SM(R))

massless R-anomalous dimension

n—2
01 (€R) = Bn(ér) — €r —aén 2) (n=j)BjAnj(€r) renormalon cancels among these terms
=0

Various contributions to &y5 Various contributions to &y5
65 = 84(0) - £5:02(9 1 1500F — aue) - 64000 1 huge cancelations
15 — 5 ] 1260F — i among the various
[ —02(9) : 1000F — BoL2(9) 3 ) : |
1ol ; FNPS i contributions!
[ : 750F . .
[ . E — 0vs :
5} 1 2 ';
250F ;
0 P TR SRR B B O | N T PP B R |-
0 02 04 06 08 1 0 02 04 06 08 1



MSR with Massive lighter quarks

omg (R, 7g) = dmg ™ (R) + RAm,(R.¢r) ;. exact Heavy Quark symmetry for MSRn

(W) &
R ] _
Am, (R, &R) = E Afffz ( 47T( )> , mg — mey () = mE®'® — my,
d L] L]
- @mgSRm) = 7 [a")(R)] + 6v7[¢r, o™ (R)] mass-dependent R-anomalous dimension

[fRa (W)

(ne)  py \" 1
(B = Yot (C“S 47fR)>

massless R-anomalous dimension

dAn(ER) =,
T > (n—3) B Anj(r)

0%, (€r) = An(€R) —€R renormalon cancels among these terms

Various contributions to 6y§

Various contributions to 6y§

b= 00 - 200 1500F —n-ci00 _—1 huge cancelations
Op e 1250F — “ul 1 among the various
: — D2(8) 1000F — Po La(d) 3 . . |
10 JA i contributions!
| 750F 3
[ . — Oy3 ]
. 500} -; .
| 250l ] requiring exactly
| ; 5 R
0 1 1 ] ] ] OF . 1 1 . 1 1 1 57 g = O
0 02 04 06 08 1 0 02 04 06 08 1 w (&)
¢ ¢
. n—2 1 I —
prediction for .\ ¢ A 4 D=3 (2) satisfies § = 0 and
: n(§) =& n(1)+2§Z(n_])BJ L ) —1 :
higher orders = ¢ T £ =1 constraints



[Hoang, Lepenik, Preisser, ‘1 7]

MSR Wlth ’n/ﬁ - ]. aCtlve ﬂaVOI"S [VM, PG. Ortega (2017)]

Physical situations in which one runs to scales R < m, and my is integrated out

Therefore we must integrate the quark q in the MSR mass as well



MSR with n, — 1 active flavors

Physical situations in which one runs to scales R < m, and my is integrated out

Therefore we must integrate the quark q in the MSR mass as well

We define the MSR(™*~!) mass as mg’le

MSR (ng—1)
Q

(R)

_ mgole —m

MSR
q

(R)

It is smoothly matched with the MSR(™*) mass at R = myg

Essential to study the ambiguity of the pole mass




MSR with n, — 1 active flavors

Physical situations in which one runs to scales R < m, and my is integrated out

Therefore we must integrate the quark q in the MSR mass as well

(ng—1) pole _ MSR (n,—1) __ .. pole _ MSR
We define the MSR'™ ™" mass as |m, 0 (R) = m] m, - (R)
It is smoothly matched with the MSR(™*) mass at R = My
Essential to study the ambiguity of the pole mass
Filk | MS evolution w2 ()
m p
n+1=6 b
> My ‘ ‘ \—l integrate out mp T w, R =1y, (my)
bottom R-evolution
with charm-mass my R =R ()]
=5 effects
mp | o bl | wen O integrate out m¢ Y R =m.(m.)
Np=
. MSRn (n,=3)
ml m,@m, charm R-evolution my, (R)
nC=3 v
Nacof
m?°|e m';ASR(R) m'?ASR(R) my(m;) my()
me<R<m,  my<R<m, m(k)>m; VFNS-like sequence of running and matching



Comment on “Vienna implementation™

While we worked on our MSR mass with massive lighter quarks the article by
Hoang, Lepenik and Preisser appeared

mg)le — mlg?/[SR(R, mq) = 5m1\Q/ISR(R) + Mg Amq (mQ, mq/mQ)

massless term R-independent
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Comment on “Vienna implementation™

While we worked on our MSR mass with massive lighter quarks the article by
Hoang, Lepenik and Preisser appeared

mg) = dmg>(R) + Mg Am, (Mg, M, /M)

mg)le — mgSR(R,

massless term R-independent
Therefore R-evolutions is the same as for massless quarks
Identical matching to MS mass at R = g
Different matching for MSR(™*) and MSR("*~1) masses at R = 7,

Prediction for higher order corrections from imposing exact Heavy Quark Symmetry
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8} 8—
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4- af our prediction
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Comment on “Vienna implementation™

While we worked on our MSR mass with massive lighter quarks the article by
Hoang, Lepenik and Preisser appeared

mg) = dmg>(R) + Mg Am, (Mg, M, /M)

mg)le — mgSR(R,

massless term R-independent
Therefore R-evolutions is the same as for massless quarks
Identical matching to MS mass at R = g
Different matching for MSR(™*) and MSR("*~1) masses at R = 7,

Prediction for higher order corrections from imposing exact Heavy Quark Symmetry

6yx107 1074 x Ay(ny, np = 0, &)

12} ' ' ' ' . 12
10} J 10F

ol 8f : :

6l ob almost identical to
4- af our prediction

o} of

of . . . . ; of

0.0 0.2 0.4 0.6 0.8 1.0

Different aims lead to slightly different versions of the MSR mass

For all practical purposes can be considered identical
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Scale dependence investigation

14 b3 . . . ATC my . .
Popular” scheme choices in the literature MS :large logs of 713 in subtractions

[Brambilla, Vairo, Sumino], [Kiyo, Mishima, Sumino]

RS mass (Pineda): no smooth transition to

Our choice: MSR mass (either version) (ni -1) scheme  [Ayala, Covetic, Pineda (2016)]
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Scale dependence investigation

“ b3 . . . AT my . .
Popular” scheme choices in the literature MS :large logs of 71’ in subtractions

[Brambilla,Vairo, Sumino], [Kiyo, Mishima, Sumino]

RS mass (Pineda): no smooth transition to

Our choice: MSR mass (either version) (ni -1) scheme  [Ayala, Covetic, Pineda (2016)]

“Popular” scale variations in the literature: Independent scale variation (one at a time)
[Ayala, Czvetic, Pineda (2016)]

Principle of minimal sensitivity [Brambilla,Vairo, Sumino]
Take the scale at maximum or minimum, double that scale to estimate uncertainties

Not defined at all orders. Large dependence on order and quantum numbers other than n.
Results in ranges that cover relativistic scales. Renders small perturbative uncertainties.

MRSp scheme W|th R = mb(mb) 10.4 MRSp scheme W|th R = mb(mb) _ MRSp scheme W|th R mC(mC) _
9.7 “f T . T T
— 10.2f — 3ol —LO —NLO
> > T “fo. — NLO — N°LO
O 10.0f 0] i
= X = 3.1F
@ 9.8} @ 2 of
£ g e 3.0f
—~ 9.6} & -
%) ' = 2.9F
N 9'4: 5 -
< 9.2 S 2.8F
9.0k 2.7t ' ' ' ' i




Scale dependence investigation

Scale variation should (only) depend on the principal quantum number n, since the
argument of perturbative logs depends on n (but not on other numbers)

Should not depend on the perturbative order

It should also depend on bottomonium vs charmonium
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should vary between 2+¢ Hnat == 24 n

We take ¢ = 0.5 but extend the upper limit to 4 GeV (similar to scale variation in
relativistic sum rules [Dehnadi, Hoang, Mateu (2013, 2015)]



Scale dependence investigation

Scale variation should (only) depend on the principal quantum number n, since the
argument of perturbative logs depends on n (but not on other numbers)

Should not depend on the perturbative order

It should also depend on bottomonium vs charmonium

Our criterion: argument of logs e - A 2E6 Cral™ ()mo
should vary between 2+¢ Hnat == 24 n

We take ¢ = 0.5 but extend the upper limit to 4 GeV (similar to scale variation in
relativistic sum rules [Dehnadi, Hoang, Mateu (2013, 2015)]

tn—1 ~ 1.9738GeV  pp—2 ~1.25+0.25GeV

M,-1 MSRn scheme with a(sn,=3) M,-., MSRn scheme with a(sn/=3)
L 1 1 1 1 E L 1 | | 1 o
10.50F 1.5 GeV = R 2 4 GeV m(1'So) 4 10.50F 1 GeV 2 R 2 4 GeV k
10.25F — TS 10.25F E
10.00F 3 10.00F HHH-
i
F ] 9'755 Xb(1°Po) 3
9.50¢ 3! 3 i1 950F Hi X6(1°P1) 3
9.25F 3 5 he(1P1) ]
B 3 9.25F Xb(1zP2) 3
3 ; g Xs(13P;) 3
>00] . . . . 1 9.00F (2'50)

1 2 3 4 — : : '

order 1 2 3 4

order



Scale dependence investigation

Scale variation should (only) depend on the principal quantum number n, since the
argument of perturbative logs depends on n (but not on other numbers)

Should not depend on the perturbative order

It should also depend on bottomonium vs charmonium

Our criterion: argument of logs e - A 2E6 Cral™ ()mo
should vary between 2+¢ Hnat == 24 n

We take ¢ = 0.5 but extend the upper limit to 4 GeV (similar to scale variation in
relativistic sum rules [Dehnadi, Hoang, Mateu (2013, 2015)]

For n = 3 one gets a lower scale below |GeV. It seems no scale choice can make the
perturbative series both convergent and compatible.

M,-3 MSRn scheme with ai"=* M,-3 MSRn scheme with o=
L | I I I - - I I I I -
10.50F 1.5 GeV 2 u,R 2 4 GeV 1 1050F1GevzuR24Gev E
10.25F ] 3 10.25F :
10.00F “ “ H l 1 10.00F :
9.75;— H H —— Y(1°Dy) - 9_752_ (D) _
9.50F X6(2Po) 3 9 50k Xb(2°Po) 3
9.25F H H 0y 9.2sF E
g X6(2°P2) 3 s Xb(2°P2)
F I I I ] F ! I | ]

1 2 4 1 2 4

order 3 order



Scale dependence investigation

Scale variation should (only) depend on the principal quantum number n, since the
argument of perturbative logs depends on n (but not on other numbers)

Should not depend on the perturbative order

It should also depend on bottomonium vs charmonium

Our criterion: argument of logs e - A 2E6 Cral™ ()mo
should vary between 2+¢ Hnat == 24 n

We take ¢ = 0.5 but extend the upper limit to 4 GeV (similar to scale variation in
relativistic sum rules [Dehnadi, Hoang, Mateu (2013, 2015)]

For charm this criterion renders the lower scale below | GeV. However the following
choice 1.2GeV > picharm > 4 GeV makes for a convergent and compatible perturbative series

Mﬁ; MSRn scheme
1 1

[ T
r 1.2 GeV 2 y,R =24 GeV

iy ] i i]

2.8F

o6k || .

2.4F — o ]

2 oF as(mz) =0.1181 % 0.0011 e 2
[ ] ] ] ] ]

1 2 order 3 4




Charm mass dependence

Y(1S) mass [GeV] at N°LO for p =
L DL R R B BT B L

R = 2 GeV
9.42 S=CACL

9.40F

non-infinite charm
quark mass correction

=1.27 GeV
|

O

m

a_______

9.38F \ o[ 6m,=0] !

9.36}
0.34}

932k I B B

9.30:.I...I...I...I...

This confirms that the (ni - |) scheme is the most
accurate to describe finite charm quark mass effect
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Perturbative correlations

Perturbative uncertainties highly correlate quarkonium masses, since

|. All masses are determined from the same static potential (M dependence)
2. Same quark mass for all bound sates (R dependence)
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We make our X function depend on (4, R) and scan on the range shown above
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Perturbative uncertainties highly correlate quarkonium masses, since

|. All masses are determined from the same static potential (M dependence)
2. Same quark mass for all bound sates (R dependence)

But for different values of n we use different scale variation —— linear rescaling

wo(p) =, Ry(R) =R 1GeV < u, R <4GeV
p13(p) =1.5GeV +2.5(u—1GeV)/3, Riz(n) =15GeV +2.5(R—1GeV)/3

Perturbative covariance matrix approach: severely affected by D’Agostini bias

We make our X function depend on (4, R) and scan on the range shown above

2
- MPP — MP (4, R, Tq)
XQ(mQaluaR) — E < <P E

i (]

This approach correctly propagates the theoretical correlations and avoids de bias

We also vary the strong coupling constant and the charm (bottom) mass for
bottomonium (charmonium)
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Different data sets

Bottomonium
1. Set,_; = { n(1S), T(18) }.
2. Sety—s = { xu0(1P). xo1(1P). hy(1P). x4a(1P). m,(25). T(2S) }.
Sety_s = { T(1D). v50(2P). xu1(2P), hy(2P). x1(2P). T(35) }.
Setr=p = { xo0(1P), xo1(1P), ht(1P), Xp2(1P) }.

H. Setp<o = Sety,—1 U Sety,—o.

_ W

0. Setn§3 — Setnzl U Setnzg U Setnzg.

+ determinations from individual states



Different data sets

Bottomonium
1. Setn—1 = { m(1S), T(1S) }.
2. Setn—s = { x00(1P), x51(1P), hy(1P), xp2(1P), np(2S), T(2S) 1.
- Sety—s = { Y(1D), xb0(2P), x51(2P), hs(2P), x12(2P), T(3S) 1.
Setr—p = { xe0(1P), x51(1P), hy(1P), xpa(1P) .

H. Setp<o = Sety,—1 U Sety,—o.

=~ o

0. Setn§3 — Setnzl U Setnzg U Setnzg.

+ determinations from individual states

Charmonium

Uc(ls), J/@D(IS) + determinations from individual states



Results for bottom and charm

mu(Mp)[GeV]  N3LO in the MSRn scheme with a!"=% m,(m;) [GeV], MSRn scheme, N°LO
‘ | |

4'45:| | | | | | | | | : | | | | | |: 15.
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Results for bottom

N°LO in the MSRn scheme with a{"=>)

1.5

and charm

m.(m,) [GeV], MSRn scheme, N°LO
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Convergence

4.6f
4.5F
4.4f
4.3

4.2F

my(M,)[GeV]  MSRn scheme with o=
| I I |
as(mz) = 0.1181 £ 0.0011 2 - ;
me(Mc) = 1.28 + 0.03 GeV - -

|

R { i“ Hi
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1

order
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1.3k
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1.1

me(Mo) [GeV]

MSRn scheme

3 — ne(18) -
- — JIy(1S)
E [ ) — N = 1 E
C 1 world average 1 III ]ll -
L g (my) = 0.1181 % 0.0011 _

order



Convergence

47 my(Mp)[GeV]  MSRn scheme with o= ms(m;) [GeV] MSRn scheme
. T T T T ] . | | | | ]
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Comparison to data
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Final results

My () = 4.216 £ 0.009exp & 0.034pere + 0.0174, & 0.0008 77, GeV
— 4.216 + 0.039 GeV

Me(Te) = 1.273 = 0.00050xp £ 0.054p6r¢ & 0.006,,. & 0.000157, GeV
— 1.273 + 0.054 GeV

Results in MSRn and MSRp schemes nearly identical
Estimate uncertainty from non-perturbative corrections comparing fits from various
datasets

Estimate uncertainty from missing finite charm mass effects by comparing fits in n
and n| - | schemes



Final results

My (M) = 4.216 & 0.009¢xp £ 0.034pere + 0.0174. + 0.0008 7, GeV
= 4.216 + 0.039 GeV

Me(Te) = 1.273 = 0.00050xp £ 0.054p6r¢ & 0.006,,. & 0.000157, GeV
— 1.273 4+ 0.054 GeV ,

Results in MSRn and MSRp schemes nearly identical

Estimate uncertainty from non-perturbative corrections comparing fits from various
datasets

Estimate uncertainty from missing finite charm mass effects by comparing fits in n
and n| - | schemes

Simultaneous determination
mb(mb) — 4.219 + 0.00026Xp T 0-062pert GGV,
al™ = (mz) = 0.1178 £ 0.0000Lexp == 0.0050, ers -

Very strong correlation between these two parameters
If correlation broken, competitive s possible
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Comparison to other determinations

my, from Bottomonium my, from other methods
1 T T T 1 T T T T 1 T T T T 1 T T T T ' ' | ' . ! ! | | ! ! ! | ! ! ! ! | ! ! !
H——— Kiyo2016: N°LL, IS - L ork
Ayala 2016: N°LL, RS . HPQCD '10 (Lattice QCD)
@ {
- Beneke et al. '"13
° « Brambilla 2002: N2LL, MS NonRelativistic Sum Rules

Hoang et al. 12

This work: N3LL, MSR ,
® 1 Dehnadi et. al. 2015

s e . . . . Relativistic Sum Rules

415 420 425 4.30 4.35 B R TR T R T — T e—
() [(GeV] e

It appears that non-relativistic analyses yield

large values for the bottom mass as compared

to the world average




Comparison to other determinations

my, from Bottomonium my, from other methods
1 T T T 1 T T T T 1 T T T T 1 T T T T ' ' | ' . ! ! | | ! ! ! | ! ! ! ! | ! ! !
H——— Kiyo2016: N°LL, IS - L ork
Ayala 2016: N°LL, RS . HPQCD '10 (Lattice QCD)
@ {
< Beneke et al. '"13
° « Brambilla 2002: N2LL, MS NonRelativistic Sum Rules

Hoang et al. 12

This work: N3LL, MSR ,
® 1 Dehnadi et. al. 2015

s e . . . . Relativistic Sum Rules
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() [(GeV] e

It appears that non-relativistic analyses yield

large values for the bottom mass as compared

to the world average

——————
This work (N°LO MSR scheme)

Kiyo 2016 (N°LO MS scheme)

Same statement does not hold true
Dehnadi et al. '15 (Relativistic Sum Rules) for charm mass

Chakraborty et al. '14 (Lattice QCD)
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Strategy: generate QCD predictions for bottomonium masses up to n = 2 and scan over
the bottom mass for a wide range.We keep m. = 0 and (1.3 GeV) fixed.
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o We generate perturbative uncertainties adapting
- ag(mz) =0.1181 .

our scale variation to a variable bottom mass

Cornell model is solved numerically with the
Numerov algorithm

1 The Cornell model parameters are fit to the QCD
| predictions. Perturbative uncertainties propagated
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Very preliminary!
Simple idea: can | relate the Cornell model parameters with QCD parameters?

Strategy: generate QCD predictions for bottomonium masses up to n = 2 and scan over
the bottom mass for a wide range.We keep m. = 0 and (1.3 GeV) fixed.

Cornell model calibration

o 1 We generate perturbative uncertainties adapting
as(mz) = 0.1181 . . e .
2 our scale variation to a variable bottom mass

% | Cornell model is solved numerically with the
=4l 1 Numerov algorithm
Sl 1 The Cornell model parameters are fit to the QCD

predictions. Perturbative uncertainties propagated
with a scan on scales

0.20f Cornell _ ,-MSRn :
E (m - mYfSRYR = 1GeV) ) [GeV] .

0.15F ; i 1 The relation between the MSR mass at any R value and
0.10F g e : _

005k 1 the Cornell mass parameter is linear with slope = |I.
0.00F 1 1 I N
-g?g 1 If we choose R = | GeV the intersect is very close to

b0 0 zero, and fully compatible with zero within errors.

5 6 7 8 9

mySRY(R = 1GeV) [GeV]



Conclusions



Conclusions

° Quarkonia masses are a good place to determine the gquark

masses with high precision.

o Employiing a Llow-scale short-distance mass as the MSR is

crucial to cancel de renormalon and avoid large logs.

o Charm mass effects in bottomonium are close to the decoupling

Limit: integrate out charm and add power corrections

o Effects from massive Lighter quarks must then be incorporated

into MSR mass, and the Lighter guark can be integrated out,
o Very precise bottom mass determination, charm also good.

o This se&u,[p can be used ko calibrate quark models such as
Cornell



