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Outline of talk

In this talk I will present some of the theoretical framework supporting the
determination of physical quantities from lattice simulations.
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2 Brief introduction to the Operator Product Expansion

3 Renormalization

4 Finite-volume effects
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1. Introduction to Lattice QCD
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Lattice phenomenology starts with the
evaluation of correlation functions of the form:

〈0|O(x1,x2, · · · ,xn) |0〉 =

1
Z

∫
[dAµ ] [dψ] [dψ̄]e−S O(x1,x2, · · · ,xn) ,

where O(x1,x2, · · · ,xn) is a multilocal operator
composed of quark and gluon fields and Z is
the partition function.

The physics which can be studied depends on the choice of the multilocal
operator O.

H

0 t

H1 H2

0 ty tx

The functional integral is performed by discretising Euclidean space-time and
using Monte-Carlo Integration.
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Two-Point Correlation Functions

H

0 t

C2(t) =
∫

d 3x ei~p·~x 〈0|φ(~x, t)φ
†(~0,0) |0〉

= ∑
n

∫
d 3x ei~p·~x 〈0|φ(~x, t) |n〉〈n|φ †(~0,0) |0〉

=
∫

d 3xei~p·~x 〈0|φ(~x, t) |H〉 〈H|φ †(~0,0) |0〉+ · · ·

=
1

2E
e−iEt ∣∣〈0|φ(~0,0)|H(p)〉

∣∣2 + · · · ⇒ 1
2E

e−Et ∣∣〈0|φ(~0,0)|H(p)〉
∣∣2 + · · · (Euclidean)

where E =
√

m2
H +~p2 and we have taken H to be the lightest state created by φ †.

The · · · represent contributions from heavier states.

By fitting C(t) to the form above, both the energy (or, if~p = 0, the mass) and the
modulus of the matrix element

∣∣〈0|J(~0,0)|H(p)〉
∣∣ can be evaluated.

Example: if φ = b̄γµ γ5u then the decay constant of the B-meson can be
evaluated,

∣∣〈0| b̄γµ γ5u |B+(p)〉
∣∣= fB pµ .
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Three-Point Correlation Functions

H1 H2

0 ty tx

C3(tx, ty) =
∫

d 3xd 3y ei~p·~x ei~q·~y 〈0|φ2(~x, tx)O(~y, ty)φ
†
1 (
~0,0) |0〉 ,

' e−E1ty

2E1

e−E2(tx−ty)

2E2
〈0|φ2(0)|H2(~p)〉〈H2(~p)|O(0)|H1(~p+~q)〉〈H1(~p+~q)|φ †

1 (0)|0〉 ,

for sufficiently large times ty and tx− ty and E2
1 = m2

1 +(~p+~q)2 and E2
2 = m2

1 +~p
2.

Thus from 2- and 3-point functions we obtain transition matrix elements of the
form |〈H2|O|H1〉|.
Important examples include 〈K̄0|(s̄γ

µ

L d)(s̄γµ Ld)|K0〉 and 〈π0|(s̄γµ u)|K+〉.
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The Scaling Trajectory

In Lattice QCD, while it is natural to think in terms of the lattice spacing a, the
input parameter is β = 6/g2(a).

Imagine performing a simulation with Nf = 2+1 with mud = mu = md around their
“physical" values.

At each β , take two dimensionless quantities, e.g. mπ/mΩ and mK/mΩ, and find
the bare quark masses mud and ms which give the corresponding physical
values.These are then defined to be the physical (bare) quark masses at that β .

Now consider a dimensionful quantity, e.g. mΩ. The value of the lattice spacing is
defined by

a−1 =
1.672GeV

amΩ(β ,mud,ms)

where amΩ(β ,mud,ms) is the computed value in lattice units.

Other physical quantities computed at the physical bare-quark masses will now
differ from their physical values by artefacts of O(a2).

Repeating this procedure at different β defines a scaling trajectory. Other choices
for the 3 physical quantities used to define the trajectory are clearly possible.

If the simulations are performed with mc and/or mu 6= md then the procedure has to
be extended accordingly.
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2. Operator Product Expansions and Effective Hamiltonians

Quarks interact strongly⇒ we have to consider QCD effects even in weak
processes.

Our inability to control (non-perturbative) QCD Effects is frequently the largest
systematic error in attempts to obtain fundamental information from experimental
studies of weak processes!

Tree-Level:

.

W O1

Since MW ' 80 GeV, at low energies the momentum in the W-boson is much
smaller than its mass⇒ the four quark interaction can be approximated by the
local Fermi β -decay vertex with coupling

GF√
2
=

g2
2

8M2
W

.
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OPEs and Effective Hamiltonians Cont.

Asymptotic Freedom⇒ we can treat QCD effects at short distances, |x| � Λ
−1
QCD

( |x|< 0.1 fm say) or corresponding momenta |p| � ΛQCD ( |p|> 2 GeV say), using
perturbation theory.

The natural scale of strong interaction physics is of O(1 fm) however, and so in
general, and for most of the processes discussed here, non-perturbative
techniques must be used.

For illustration consider K→ ππ decays, for which the tree-level amplitude is
proportional to

GF√
2

V∗udVus 〈ππ|(d̄γ
µ (1− γ

5)u)(ūγµ (1− γ
5)s)|K〉 .

s

d̄

u

ū

W

We therefore need to
determine the matrix
element of the operator

O1 =(d̄γ
µ (1−γ

5)u)(ūγµ (1−γ
5)s) .
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OPEs and Effective Hamiltonians Cont.

s

d̄

u

ū

W

s

d̄

u

ū

WG

Gluonic corrections generate a second operator (d̄Taγµ (1− γ5)u)(ūTaγµ (1− γ5)s),
which by using Fierz Identities can be written as a linear combination of O1 and
O2 where

O2 = (d̄γ
µ (1− γ

5)s)(ūγµ (1− γ
5)u) .

OPE⇒ the amplitude for a weak decay process can be written as

Aif =
GF√

2
VCKM ∑

i
Ci(µ)〈f |Oi(µ) |i〉 .

µ is the renormalization scale at which the operators Oi are defined.
Non-perturbative QCD effects are contained in the matrix elements of the Oi,
which are independent of the large momentum scale, in this case of MW .
The Wilson coefficient functions Ci(µ) are independent of the states i and f and
are calculated in perturbation theory.
Since physical amplitudes manifestly do not depend on µ, the µ-dependence in
the operators Oi(µ) is cancelled by that in the coefficient functions Ci(µ).
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Towards more insight into the structure of the OPE.

s

d̄

u

ū

W

s

d̄

u

ū

WG

For large loop-momenta k the right-hand graph is ultra-violet convergent:∫
k large

1
k

1
k

1
k2

1
k2−M2

W
d4k ,

(1/k for each quark propagator and 1/k2 for the gluon propagator.)
We see that there is a term ∼ log(M2

W/p2), where p is some infra-red scale.

In the OPE we do not have the W-propagator.
s

d̄

u

ū

G
O1

Power Counting :
∫

k large

1
k

1
k

1
k2 d4k ⇒ divergence ⇒ µ−dependence.
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Towards more insight into the structure of the OPE. (Cont.)

Infra-dependence is the same as in the full field-theory.

log

(
M2

W
p2

)
= log

(
M2

W
µ2

)
+ log

(
µ2

p2

)

The ir physics is contained in the matrix elements of the operators and the uv
physics in the coefficient functions:

log

(
M2

W
µ2

)
→ Ci(µ)

log
(

µ2

p2

)
→ matrix element of Oi

In practice, the matrix elements are computed in lattice simulations with an
ultraviolet cut-off of 2 – 4 GeV. Thus we have to resum large logarithms of the
form αn

s logn(M2
W/µ2) in the coefficient functions⇒ factors of the type[

αs(MW)

αs(µ)

]γ0/2β0

.
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Towards more insight into the structure of the OPE. (Cont.)

[
αs(MW)

αs(µ)

]γ0/2β0

γ0 is the one-loop contribution to the anomalous dimension of the operator
(proportional to the coefficient of log(µ2/p2) in the evaluation of the one-loop
graph above) and β0 is the first term in the β -function,
(β ≡ ∂g/∂ ln(µ) = −β0 g3/16π2).

In general when there is more than one operator contributing to the right hand
side of the OPE, the mixing of the operators⇒ matrix equations.

The factor above represents the sum of the leading logarithms, i.e. the sum of the
terms αn

s logn(M2
W/µ2). For almost all the important processes, the first (or even

higher) corrections have also been evaluated.

These days, for most processes of interest, the perturbative calculations have
been performed to several loops (2,3,4), NnLO calculations.
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OPEs and Effective Hamiltonians Cont.

The effective Hamiltonian for weak decays takes the form

Heff ≡
GF√

2
VCKM ∑

i
Ci(µ)Oi(µ) .

For some important physical quantities (e.g. ε ′/ε), there may be as many as ten
operators, whose matrix elements have to be estimated.

Lattice simulations enable us to evaluate the matrix elements non-perturbatively.
This is the subject of most of the remainder of these lectures.

In weak decays the large scale, MW , is of course fixed. For other processes, most
notably for deep-inelastic lepton-hadron scattering, the OPE is useful in
computing the behaviour of the amplitudes with the large scale (e.g. with the
momentum transfer).
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3. Renormalization - Towards mMS(µ)

The quark masses mq(a) and QCD coupling constant g(a) obtained as above are
bare parameters with a -1 as the ultraviolet cut-off and with discretised QCD as the
bare theory.

In perturbative calculations it is particularly convenient, and therefore
conventional, to use the MS renormalisation scheme.

Note that the MS scheme is purely perturbative; we cannot perform
simulations in 4+2ε dimensions.
Originally, providing both a -1 and µ are sufficiently large, renormalised
quantities in the MS scheme were obtained from the bare lattice ones using
perturbation theory, e.g.

mMS(µ) = Zm(aµ)mlatt(a) .

However, lattice perturbation theory frequently converges slowly (e.g. partly
because of tadpole diagrams) and is technically complicated, e.g. for a
scalar propagator, 1

k2 +m2 →
1

∑µ{ 4
a2 sin2 kµ a

2 }+m2
.

⇒ Non-perturbative renormalisation
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Non-perturbative renormalisation

A General Method for Nonperturbative Renormalisation of Lattice Operators
G.Martinelli, C.Pittori, CTS, M.Testa and A.Vladikas Nuclear Physics B445 (1995) 81

There are finite operators, such as Vµ and Aµ whose normalisation is fixed by
Ward Identities (also ZS/ZP).

Consider an operator O, which depends on the scale a, but which does not mix
under renormalization with other operators:

OR(µ) = ZO(µa)OLatt(a) .

The task is to determine ZO .

In the Rome-Southampton RI-Mom scheme, we impose that the matrix element
of the operator between parton states, in the Landau gauge say, is equal to the
tree level value for some specified external momenta.

These external momenta correspond to the renormalisation scale.

I will illustrate the idea by considering the scalar density S = q̄q .

Since mq(q̄q) does not need renormalization, ZmZS = 1, so from the
determination of ZS we obtain Zm.

Chris Sachrajda Vienna, October 17 2017 18



RI-Mom - Scalar Density

p p

q̄q

(i) Fix the gauge (to the Landau gauge say).
(ii) Evaluate the unamputated Green function:

G(x,y) = 〈0 |u(x) [ū(0)d(0)] d̄(y) |0〉
and Fourier transform to momentum space, at momentum p as in the diagram,
⇒ G(p) .

(iii) Amputate the Green function:

Π
ij
S,αβ

(p) = S−1(p)G(p)S−1(p) ,

where α,β (i, j) are spinor (colour) indices.
At tree level Π

ij
αβ

(p) = δαβ δ ij and it is convenient to define

ΛS(p) =
1
12

Tr [ΠS(p) I] ,

so that at tree-level ΛS = 1 .
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RI-Mom - Scalar Density - Cont.

p p

q̄q

So far we have calculated the amputated Green function, in diagrammatic
language, we have calculated the one-particle irreducible vertex diagrams.
In order to determine the renormalization constant we need to multiply by

√
Zq for

each external quark (i.e. there are two such factors).

(iv) We now evaluate Zq. There are a number of ways of doing this, perhaps the best
is to use the non-renormalization of the conserved vector current:

Zq ΛVC = 1 where ΛVC =
1
48

Tr [ΠVµ

C
(p)γ

µ ] .

This is equivalent to the definition

Zq =−
i

48
tr

(
γρ

∂S−1
latt

∂pρ

)
at p2 = µ2 .
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RI-Mom - Scalar Density - Cont.

p p

q̄q

We now have all the ingredients necessary to impose the renormalization
condition. We define the renormalized scalar density SR by
SR(µ) = ZS(µa)SLatt(a) where

ZS
ΛS(p)

ΛVC (p)
= 1 ,

for p2 = µ2 .

The scalar density has a non-zero anomalous dimension and therefore ZS
depends on the scale µ.

The renormalization scheme here is a MOM scheme. We called it the RI-MOM
scheme, where the RI stands for Regularization Independent to underline the fact
that the renormalized operators do not depend on the bare theory (i.e. the lattice
theory).
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RI-Mom Renormalization - Comments

For any renormalisation method we require a delicate window for the momenta,
ideally:

p� ΛQCD and p� a−1 .

p� ΛQCD is required in order for perturbation theory to be applicable, so that the
results can be combined with the Wilson Coefficient functions, or to translate the
results into the MS scheme.

p� a−1 to keep the lattice artefacts small.

Step Scaling, which we won’t discuss today, allows us, in principle, to relax the
first condition, p� ΛQCD.

The method has been used by a number of the large collaborations,
including RBC/UKQCD.

One, unattractive feature however, is that we need to fix the gauge. When
considering operator mixing, we have to consider non-gauge invariant (but BRST
invariant) operators.
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Non-Perturbative Contributions

The RI-Mom Scheme was defined at an exceptional momentum, i.e. with a
channel with a small (zero) momentum.
Thus the matrix elements carry information about the physical mass spectrum
which is unaccessible to perturbation theory.

Although we showed in the RS paper that these non-perturbative effects are
suppressed by powers of p2, there is growing evidence that they present a
numerical contamination which, as we strive for greater precision, should be
evaluated.

An extreme example is the pseudoscalar density where there are
non-perturbative effects of the form

〈0|ψ̄ψ|0〉
mp2

so that it is not possible to go to the chiral limit.
Giusti and Vladikas suggest taking combinations such as

m1ΛP(m1)−m2ΛP(m2)

m1−m2
.
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Non-Perturbative Contributions Cont.

Nonperturbative renormalization of quark bilinears and BK using domain wall fermions
RBC-UKQCD, Y.Aoki, et al., arXiv:0712.1061

k

pp p− k

k

k

k

q Γµ(0)q

One can imagine routing the large momentum p through the gluon to obtain

m2

p2 or
m〈q̄q〉

p4

contributions.
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Evidence for Non-Perturbative Contributions
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Both panels show
2(ΛV −ΛA)

ΛV +ΛA
as a function of p2.

LH panel is for exceptional momenta whereas the RH panel is from an
exploratory study with p2

1 = p2
2 = p2 (RI-SMOM).

Chris Sachrajda Vienna, October 17 2017 25



RI-SMOM

Renormalization of quark bilinear operators in a MOM-scheme with a non-exceptional
subtraction point
C.Sturm, Y.Aoki, N.H.Christ, T.Izubuchi, CTS, and A.Soni; arXiv:0901.2599 [hep-ph]

p p

ψ̄Γψ

→ p1 p2

ψ̄Γψ

p21 = p22 = (p1 − p2)
2

In this paper we develop the scheme with the non-exceptional subtraction point

p2
1 = p2

2 = (p1−p2)
2 .

We calculate the one-loop conversion factors between this scheme and the MS
scheme. This is entirely a continuum exercise.
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RI-SMOM Cont.

An important requirement is that the chiral Ward Identities are satisfied by the
renormalized quantities.

The wave-function renormalization is fixed by imposing the RI′-MOM condition

1
12p2 tr[S−1

R (p) 6p] =−1 .

The definition of S differs by factors of i w.r.t. the Rome-Southampton paper.

The renormalization conditions on S and P are

1
12

tr[ΛP,R(p1,p2)] = 1 and
1

12i
tr[ΛP,R(p1,p2)γ5] = 1 .

These conditions respect the chiral symmetry between S and P (e.g. the
matching factors to M̄S are the same.

In order to preserve the WI, and in particular that mψ̄ψ remains unrenormalized,
we impose the mass renormalization condition

1
12mR

tr[S−1
R (p)] = 1+

1
24mR

tr[qµ Λ
µ

A,R(p1,p2)γ5] .
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RI-SMOM Continued

For the vector and axial currents the normalization conditions are:

1
12q2 tr[qµ Λ

µ

V,R(p1,p2) 6q] = 1 and
1

12q2 tr[qµ Λ
µ

A,R(p1,p2)γ5 6q] = 1 .

With these conditions the vector and axial currents satisfy the WI.

The validity of the Ward Identities is demonstrated explicitly at one-loop order.

For the tensor current there are no WI to satisfy and we simply impose

1
144

Tr[Λµν

T,Rσµ ν ] = 1 .
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RI-SMOM – Quark Mass Renormalization

Using the RI-MOM scheme we find that we are left with a large error in our value
of the quark masses due to the uncertainty in the conversion from RI-MOM to
MS.

Cm(RI/MOM→MS) = 1−4
αs

4π
CF +O(α2

s ) = 1+12%+7%+6%+ ...

Why?

With the RI-SMOM scheme we only know the one-loop result

Cm(RI/SMOM→MS) = 1−0.484
αs

4π
CF +O(α2

s ) = 1+1.5%+ ...

Is this an accident or evidence that the convergence is better.
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Evidence for small chiral symmetry breaking
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Y.Aoki arXiv:0901.2595 [hep-lat]
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Gauge Invariant NPR

In my view, we should investigate the best way to perform NPR in a gauge
invariant way.

One possibility is to compute correlation functions at short distances in
configuration space and require that the renormalised operators give the lowest
order perturbative contribution.

Z2
O 0 x = 0 x

where the yellow circles represent the insertion of the lattice operator OLatt and
the right-hand diagram represents the lowest-order diagram in perturbation
theory.

The renormalization scale is now 1/|x|, and the same constraints on the values of
1/x2 hold here as for the momenta in the RI-Mom scheme.

The Alpha collaboration (and others) has been implementing a gauge invariant
NPR, based on the use of the Schrödinger Functional.
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One last point!

Since we cannot perform simulations with lattice spacings < 1/MW or 1/mt we
exploit the standard technique of the Operator Product Expansion and write
schematically:

Physics = ∑
i

Ci(µ)×〈f |Oi(µ)|i〉 .

Until recently, the (perturbative) Wilson coefficients Ci(µ) were typically calculated
with much greater precision than our knowledge of the matrix elements.

The Ci are typically calculated in schemes based on dimensional
regularisation (such as MS) which are intrinsically perturbative.
We can compute the matrix elements non-perturbatively, with the operators
renormalised in schemes which have a non-perturbative definition (such as
RI-MOM schemes) but not in purely perturbative schemes based on dim.reg.

G.Martinelli, C.Pittori, CTS, M.Testa and A.Vladikas, hep-lat/9411010

Thus the determination of the Ci in MS-like schemes is not the complete
perturbative calculation. Matching between MS and non-perturbatively defined
schemes must also be performed.

This is beginning to be done.
We are now careful to present tables of matrix elements of operators
renormalized in RI-MOM schemes, which can be used to gain better
precision once improved perturbative calculations are performed.
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FLAG summary in light-quark physics

Quantity � Nf =2+1+1 � Nf = 2+1 � Nf = 2

ms(MeV) 2 93.9(1.1) 5 92.0(2.1) 2 101(3)
mud(MeV) 1 3.70(17) 5 3.373(80) 1 3.6(2)
ms/mud 2 27.30(34) 4 27.43(31) 1 27.3(9)
md(MeV) 1 5.03(26) Flag(4) 4.68(14)(7) 1 4.8(23)
mu(MeV) 1 2.36(24) Flag(4) 2.16(9)(7) 1 2.40(23)
mu/md 1 0.470(56) Flag(4) 0.46(2)(2) 1 0.50(4)
mc/ms 3 11.70(6) 2 11.82 1 11.74

f Kπ
+ (0) 1 0.9704(24)(22) 2 0.9667(27) 1 0.9560(57)(62)

fK+/fπ+ 3 1.193(3) 4 1.192(5) 1 1.205(6)(17)
fK(MeV) 3 155.6(4) 3 155.9(9) 1 157.5(2.4)
fπ (MeV) 3 130.2(1.4)

Σ
1
3 (MeV) 1 280(8)(15) 4 274(3) 4 266(10)

Fπ/F 1 1.076(2)(2) 5 1.064(7) 4 1.073(15)
¯̀3 1 3.70(7)(26) 5 2.81(64) 3 3.41(82)
¯̀4 1 4.67(3)(10) 5 4.10(45) 2 4.51(26)

B̂K 1 0.717(18)(16) 4 0.7625(97) 1 0.727(22)(12)
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4 Finite-Volume Effects - One-Dimensional Example

Let f (p2) be a smooth function. For a sufficiently large L:
1
L ∑

n
f (p2

n) =
∫ dp

2π
f (p2) ,

where pn = (2π/L)n and the relation holds "locally".
In actual lattice calculations the spacing between momenta are O(few100MeV)
so we would not expect such a local relation to be sufficiently accurate.
However using the Poisson summation formula:

∞

∑
n=−∞

δ (x−n) =
∞

∑
n=−∞

exp(2πinx)

we obtain the powerful exact relation

1
L

∞

∑
n=−∞

f (p2
n) =

∫
∞

−∞

dp
2π

f (p2)+ ∑
n 6=0

∫
∞

−∞

dp
2π

f (p2)einpL ,

which implies that
1
L ∑

n
f (p2

n) =
∫

∞

−∞

dp
2π

f (p2) ,

up to exponentially small corrections in L.
In our approach, this is the starting point for all calculations of FV effects.
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An illustrative example

1
L

∞

∑
n=−∞

f (p2
n) =

∫
∞

−∞

dp
2π

f (p2)+ ∑
n 6=0

∫
∞

−∞

dp
2π

f (p2)einpL ,

Consider a term with n > 0:∫ dp
2π

einpL

p2 +m2 =
∫ dp

2π

einpL

(p+ im)(p− im)

=
1

2m
e−nmL

Note that the finite-volume corrections are much smaller than would be expected
from density of states arguments.

The exponentially small FV corrections can also frequently be estimated using
Chiral Perturbation Theory.
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One-Dimensional Examples (cont.)

If the function f (p2) has no singularities on the real axis, then the Poisson-Summation
formula implies that

1
L ∑

n
f (p2

n) =
∫

∞

−∞

dp
2π

f (p2) ,

up to terms which are exponentially small in L.

Numerical Examples:

f (p2) Sum (L = 32) Integral Difference

e−p2
0.282095 0.282095 O(10−10)

e−p2/16 1.12838 1.12838 O(10−12)

e−(p/(2π/L))2
0.0553949 0.0553892 O(5×10−6)

1
p2+1 0.5 0.5 0

1
p2+(2π/L)2 2.55601 2.54648 O(10−2)

Note that the contribution to the sum from the term with pn = 0 is 1/32=0.031 for
all the Gaussians and yet the sum approximates the integral very well.
In the last row the contribution from the term with pn = 0 is 0.81.
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One-Dimensional Examples

When there is a singularity the summation formula has a correction term. For example:

1
L ∑

n

f (p2
n)

k2−p2
n
= P

∫
∞

−∞

dp
2π

f (p2)

k2−p2 +
f (k2) cot(kL/2)

2k
.

(This is the one-dimensional version of the key ingredient in the Lüscher quantisation
formula.)

Numerical Examples:

f (p2) k/(2π/L) Sum (L = 32) Integral cot term Difference

e−p2
0.5 0.560578 0.560578 0 O(10−12)

e−p2
0.4 2.61766 0.561875 2.05578 O(10−12)

e−(p/(2π/L))2
0.5 2.43916 2.43915 0 O(10−5)

e−(p/(2π/L))2
0.4 4.34832 2.58565 1.76266 O(10−5)

The contribution from the single term at pn = 0 for k = 0.4(2π/L) is about 5.

The optimal choice of volume appears to be L = π/k!
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Status of Finite Volume Effects in Lattice Simulations

These are based on the Poisson summation formula:
1
L

∞

∑
n=−∞

f (p2
n) =

∫
∞

−∞

dp
2π

f (p2)+ ∑
n 6=0

∫
∞

−∞

dp
2π

f (p2)einpL ,

For single-hadron states the finite-volume corrections decrease exponentially with
the volume ∝ e−mπ L. For multi-hadron states, the finite-volume corrections
generally fall as powers of the volume.
For two-hadron states, there is a huge literature following the seminal work by
Lüscher and the effects are generally understood.

The spectrum of two-pion states in a finite volume is given by the scattering
phase-shifts. M. Luscher, Commun. Math. Phys. 105 (1986) 153, Nucl. Phys. B354 (1991) 531.
The K→ ππ amplitudes are obtained from the finite-volume matrix elements
by the Lellouch-Lüscher factor which contains the derivative of the
phase-shift. L.Lellouch & M.Lüscher, hep-lat/:0003023,

C.h.Kim, CTS & S.R.Sharpe, hep-lat/0507006 · · ·
Recently we have also determined the finite-volume corrections for
∆mK = mKL −mKS . N.H.Christ, X.Feng, G.Martinelli & CTS, arXiv:1504.01170

For three-hadron states, there has been a major effort by Hansen and Sharpe
leading to much theoretical clarification.

M.Hansen & S.Sharpe, arXiv:1408.4933, 1409.7012, 1504.04248
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The end

In this talk I have sketched some of the theoretical framework which enables us to
extract physical quantities in flavour physics or hadronic structure from
simulations of lattice QCD.

Chris Sachrajda Vienna, October 17 2017 40


