Facets of Chiral Perturbation Theory

Gerhard Ecker

Univ. Wien

Updated version of talk given at Hadron Structure '13, Tatranske Matliare, Slovakia June 30 - July 4, 2013

Contents

- Motivation and overview
- Nonleptonic kaon decays
- Carbogenesis: the Hoyle state
- Low-energy constants and lattice QCD
- Conclusions

Motivation and overview

Goal

systematic and quantitative treatment of the Standard Model at low energies (E < 1 GeV)

- Effective Field Theory (EFT)
- Lattice Field Theory

main objectives

- understand physics of the SM at low energies
- look for evidence of new physics

E < 1 GeV:

 strong-coupling regime of QCD not accessible in standard perturbation theory

key concept for EFT: approximate chiral symmetry of QCD

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{2} ext{tr}(\mathit{G}_{\mu
u}\mathit{G}^{\mu
u}) + \sum_{f=1}^{6} \overline{q}_{f}\left(i\gamma^{\mu}\mathit{D}_{\mu} - \mathit{m}_{f}\mathbb{1}_{c}
ight)q_{f}$$

for $m_f = 0$: chiral components can be rotated separately

$$q_{ extit{fL}} = rac{1}{2}(1-\gamma_5)q_{ extit{f}}, \qquad \qquad q_{ extit{fR}} = rac{1}{2}(1+\gamma_5)q_{ extit{f}}$$

chiral symmetry $SU(n_F)_L \times SU(n_F)_R \times U(1)_V$

 $m_f = 0$:

- very good approximation for $n_F = 2$ (u, d)
- reasonable approximation for $n_F = 3$ (u, d, s)

in contrast to isospin SU(2) or flavour SU(3):

no sign of chiral symmetry in hadron spectrum

many other arguments in favour of

spontaneous breaking of chiral symmetry

$$SU(n_F)_L \times SU(n_F)_R \times U(1)_V \longrightarrow SU(n_F)_V \times U(1)_V$$

Goldstone theorem:

 $\exists n_F^2 - 1$ massless (for $m_f = 0$) Goldstone bosons

Goldstone fields parametrize $SU(n_F)_L \times SU(n_F)_R / SU(n_F)_V$

n_F	$n_{F}^{2} - 1$	Goldstone bosons
2	3	π
3	8	π, \mathcal{K}, η

even in the real world $(m_a \neq 0)$:

pseudo-scalar meson exchange dominates amplitudes at low energies

construct EFT for pseudo-Goldstone bosons

nonlinear realization of chiral symmetry

effective Lagrangian necessarily nonpolynomial

consequence:

EFT nonrenormalizable QFT: Chiral Perturbation Theory (CHPT)

Weinberg, Gasser, Leutwyler,...

nevertheless: CHPT fully renormalized QFT

(to next-to-next-to-leading order)

basis for systematic low-energy expansion:

pseudo-Goldstone bosons decouple for vanishing momenta and masses

systematic approach for low-energy hadron physics

most advanced in meson sector (up to 2 loops)

also single-baryon sector and few-nucleon systems

electroweak interactions can be included

Effective chiral Lagrangian (meson sector)

LECs: low-energy constants \equiv coupling constants of CHPT in red: Lagrangians relevant for nonleptonic K decays

Nonleptonic kaon decays

dominant decays: $K \rightarrow 2\pi, 3\pi$

LO Cronin

NLO Kambor, Missimer, Wyler

NLO + isospin violation + rad. corrs. Cirigliano, E., Neufeld, Pich Bijnens, Borg

 \longrightarrow LO couplings G_8, G_{27} well known

Effective chiral Lagrangian (meson sector)

in red: LO Lagrangian for nonleptonic K decays

in blue: NLO Lagrangian — "—

dominant decays: $K \rightarrow 2\pi, 3\pi$

LO Cronin

NLO Kambor, Missimer, Wyler

NLO + isospin violation + rad. corrs. Cirigliano, E., Neufeld, Pich Bijnens, Borg

LO couplings G_8 , G_{27} well known

N.B.: all other nonleptonic transitions start at NLO = $O(G_F p^4)$

22 (octet) + 28 (27-plet) LECs problem:

Theorists' favourite nonleptonic decays

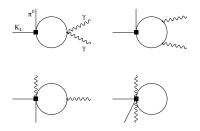
$$K_S \rightarrow \gamma \gamma$$
, $K_L \rightarrow \pi^0 \gamma \gamma$ [, $K_S \rightarrow \pi^0 \pi^0 \gamma \gamma$]

no LECs at all at NLO!

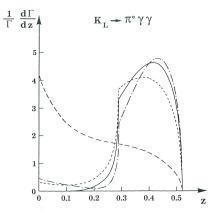
Status at $O(G_F p^4)$

$$K_S \to \gamma \gamma$$
 D'Ambrosio, Espriu; Goity $K_L \to \pi^0 \gamma \gamma$ E., Pich, de Rafael; Cappiello, D'Ambrosio $K_S \to \pi^0 \pi^0 \gamma \gamma$ Funck, Kambor

- $O(G_F p^2)$ no contribution
- $O(G_F p^4)$ LECs do not contribute \rightarrow finite loop amplitude

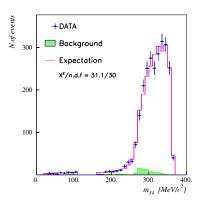


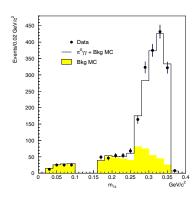
pre-CHPT: $K_I \to \pi^0 \gamma \gamma$ vector-meson dominated compare 2-photon spectra



Normalized decay distribution in $z=M_{\gamma\gamma}^2/M_K^2$ E., Pich, de Rafael

leading order $[O(p^4)]$ full curve pure vector resonance exchange dashed curve [$a_V=-.32$ dotted curve]





NA48 (2002)

KTeV (2008)

• rescattering (unitarity) corrections largely model independent

Cappiello, D'Ambrosio, Miragliuolo; Cohen, E., Pich; Kambor, Holstein

 $K_S \to \gamma \gamma$ "trivial" in terms of $K \to 2\pi$ rate $K_L \to \pi^0 \gamma \gamma$ more involved but straightforward

resonance contributions

Cohen, E., Pich; D'Ambrosio, Portolés; Buchalla, D'Ambrosio, Isidori

 $K_S \to \gamma \gamma$ small (vector mesons cannot contribute) $K_L \to \pi^0 \gamma \gamma$ vector meson contribution model dependent good approximation: single parameter a_V

puzzling result of NA48 (2003):

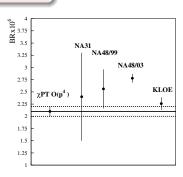
rate substantially bigger than

$$O(p^4)$$
 result

KLOE (2008):

$$B(K_S \to \gamma \gamma) = 2.26(12)(06) \times 10^{-6}$$

perfect agreement



not a good idea:

PDG averages NA48/03 and KLOE

$$B(K_S \to \gamma \gamma) = 2.63(17) \times 10^{-6}$$

for reasonable values of a_V :

pion loop dominates $2\gamma\text{-spectrum}$

rate more affected both by rescattering corrections and by a_{V}

⇒ excellent agreement between theory and experiment

$$B(K_L \to \pi^0 \gamma \gamma) \cdot 10^6 = \begin{cases} 1.27 \pm 0.04 \pm 0.01 & \text{NA48 (2002)} \\ 1.28 \pm 0.06 \pm 0.01 & \text{KTeV (2008)} \\ 1.273 \pm 0.033 & \text{PDG (2012)} \end{cases}$$
 $a_V = -0.43 \pm 0.06 & \text{PDG (2012)}$

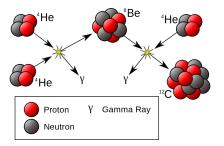
important consequence

CP-conserving contribution $K_L \to \pi^0 \gamma^* \gamma^* \to \pi^0 e^+ e^-$ negligible in comparison with CP-violating amplitudes

Carbogenesis: the Hoyle state

almost all carbon produced in stellar nucleosynthesis via

$\mathsf{triple} ext{-}\alpha$ process



Hoyle (1954): to explain observed carbon abundance

 \rightarrow \exists excited 0⁺ state of ¹²C near ⁸Be- α threshold observed soon afterwards

properties of Hoyle state

$$\epsilon = 379.47(18) \text{ keV}$$
 (above 3α threshold)

$$\Gamma_{
m tot} = 8.3(1.0) \; {
m eV}, \quad \Gamma_{\gamma} = 3.7(5) \; {
m meV}$$

triple- α rate $\sim \Gamma_{\gamma} \exp{-\epsilon/kT} \longrightarrow \text{mainly sensitive to } \epsilon$

example of anthropic principle?

Livio et al. (1989), Oberhummer et al. (2004)

 $\Delta \epsilon \lesssim 100$ keV tolerable to explain abundance of $^{12}\text{C},~^{16}\text{O}$

 \longrightarrow not exactly severe fine-tuning

however:

more interesting issue:

dependence of ϵ on fundamental parameters of strong and electromagnetic interactions

one-parameter (p) nuclear cluster model

Oberhummer et al.

tolerances

$$\Delta p/p \lesssim 0.5\%$$

$$\Delta F_{\rm Coulomb}/F_{\rm Coulomb} \lesssim 4\%$$

open question:

relation to fundamental parameters of QCD and QED?

chiral EFT of nuclear forces

Weinberg (1990), ...

expansion of nuclear potential (2-,3-,4-nucleon forces) successful approach for small nuclei ($A \le 3$)

more recent development

nuclear lattice simulations (Muller, Lee, Borasoy, ...)

lattice dofs: nucleons (not quarks!) and pions

Monte-Carlo techniques

Nonleptonic K decays

 \longrightarrow energies of low-lying states of ¹²C (in MeV)

	01+	$2_1^+(E^+)$	0_{2}^{+}
LO	-96(2)	-94(2)	-89(2)
NLO	-77(3)	-74(3)	-72(3)
NNLO	-92(3)	-89(3)	-85(3)
Exp	-92.16	-87.72	-84.51

Epelbaum et al.

0₂⁺: Hoyle state

method allows to study dependence on

quark masses (via
$$M_\pi^2 \sim (m_u + m_d))$$

fine-structure constant $\alpha_{\rm em}$ (not $\alpha_{\rm QCD}$)

final conclusion for tolerances

$$\Delta m_q/m_q \lesssim 3\%$$
 $\Delta \alpha_{\rm em}/\alpha_{\rm em} \lesssim 2.5\%$

ightarrow fine-tuning in $\emph{m}_{m{q}}, lpha_{
m em}$ much more severe than in ϵ

Low-energy constants and lattice QCD

Motto (Laurent Lellouch, John F. Kennedy)

Ask not what CHPT can do for the lattice, but ask what the lattice can do for CHPT

- CHPT → lattice (chiral) extrapolation to physical quark (meson) masses still useful, but less needed than 5 years ago
- lattice → CHPT
 determination of LECs (FLAG, ...)
 especially welcome for LECs multiplying quark mass terms
 advantage of lattice simulations compared to phenomenology:
 quark (and therefore meson) masses can be tuned

illustrative example:

chiral SU(3) Lagrangian (strong interactions)

$$\mathcal{L}_{\rho^{2}}(2) = \frac{F_{0}^{2}}{4} \langle D_{\mu}UD^{\mu}U^{\dagger} + \chi U^{\dagger} + \chi^{\dagger}U \rangle$$

$$\mathcal{L}_{\rho^{4}}(10) = \cdots + L_{4} \langle D_{\mu}UD^{\mu}U^{\dagger} \rangle \langle \chi U^{\dagger} + \chi^{\dagger}U \rangle + \cdots$$

 $\langle \dots \rangle$ flavour trace $F_0 = \lim_{m_u, m_d, m_s \to 0} F_\pi$, $\chi = 2B_0 \mathcal{M}_q$ ($B_0 \sim$ quark condensate) $U = \mathbb{1} + \text{meson fields}$ gauge-covariant derivative $D_\mu U$ (contains A_μ, W_μ^\pm)

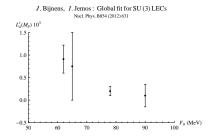
$$\mathcal{L}_{p^2}(2) + \mathcal{L}_{p^4}(10) = \frac{1}{4} \langle D_\mu U D^\mu U^\dagger \rangle \left[F_0^2 + 8 L_4 \left(2 \mathring{M}_K^2 + \mathring{M}_\pi^2 \right) \right] + \dots$$

 \mathring{M}_{P} lowest-order meson mass

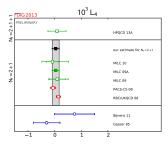
$$F_{\pi}^2/(16M_K^2) = 2 \times 10^{-3}$$
 ~ typical size of NLO LEC

consequences

 strong anticorrelation between F₀ and L₄ in global fits
 Bijnens, Jemos



- but: F_0 less known than many higher-order LECs
- rather wide spread in F_0 also from lattice studies \longrightarrow FLAG does not perform an average
- L_4 is large- N_c suppressed \longrightarrow in Gasser, Leutwyler (1985) set to zero (more precisely: $L_4^r(M_\eta) = 0 \pm 0.5 \times 10^{-3}$) FLAG (2011): published lattice determinations (for $L_4^r(M_\rho)$)



$$F = \lim_{m_u, m_d \to 0} F_{\pi}$$

Motivation

$$F_0 = F - F^{-1} \left\{ \left(2M_K^2 - M_\pi^2 \right) \left(4L_4^r(\mu) + \frac{1}{64\pi^2} \log \mu^2 / M_K^2 \right) + \frac{M_\pi^2}{64\pi^2} \right\} + O(\rho^6)$$

"paramagnetic" inequality (Descotes-Genon, Girlanda, Stern)

$$F_0 < F \longrightarrow L_4^r(M_0) > -0.4 \times 10^{-3}$$

FLAG (2013): $F = (85.9 \pm 0.6) \text{ MeV}$

linear relation between F_0 and L_4

suggestion:

determine F_0 , L_4 from SU(3) lattice data for F_{π}

advantage:

anti-correlation can be softened by tuning quark masses

 \longrightarrow smaller errors for F_0, L_4

essential: CHPT to NNLO = $O(p^6)$ (Amoros, Bijnens, Talavera)

drawbacks:

chiral SU(3) expression at NNLO (2 loops) quite involved only available in numerical form

 \Longrightarrow most lattice groups ignore CHPT amplitudes

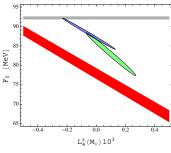
proposal:

E., Masjuan, Neufeld

employ large- N_c motivated approximation for 2-loop calculation requires tree- and 1-loop amplitudes only

in addition: need some knowledge of L_5 and LECs of $O(p^6)$

(e.g.: from analysis of
$$F_K/F_\pi$$
)



RBC/UKQCD data (2013)

$$F_0 = (88.1 \pm 4.0) \text{ MeV}$$

 $L_4^r(M_\rho) = (-0.05 \pm 0.18) \cdot 10^{-3}$

green ellipse: lattice data only

include $F_{\pi}^{\mathrm{exp}} = (92.2 \pm 0.3) \; \mathrm{MeV}$ blue ellipse:

most precise value for F_0 discrepancy with SU(2) constraint (red band)? persisting anti-correlation between F_0 , L_4 despite lattice data?

Conclusions

main objectives

- understand physics of the SM at low energies
- look for evidence of new physics

objectives accomplished?

- we have gone some way in understanding the SM at low energies
- on the other hand: we have not found evidence for new physics
- but neither has the LHC!